메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 1283-1314

Second order cone programming approaches for handling missing and uncertain data

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA REDUCTION; METHOD OF MOMENTS; PROBLEM SOLVING; REGRESSION ANALYSIS; UNCERTAIN SYSTEMS;

EID: 33745800909     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (210)

References (32)
  • 1
    • 0032207223 scopus 로고    scopus 로고
    • Robust convex optimization
    • A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769-805, 1998.
    • (1998) Math. Oper. Res. , vol.23 , Issue.4 , pp. 769-805
    • Ben-Tal, A.1    Nemirovski, A.2
  • 6
    • 26944496310 scopus 로고    scopus 로고
    • Support vector classification with input data uncertainty
    • Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors
    • J. Bi and T. Zhang. Support vector classification with input data uncertainty. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.17
    • Bi, J.1    Zhang, T.2
  • 7
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7:108-116, 1995.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 10
    • 33745782333 scopus 로고    scopus 로고
    • The scenario approach to robust control design
    • Universita di Brescia. submitted
    • G. Calafiore and M. C. Campi. The scenario approach to robust control design. Technical report, Universita di Brescia, 2004. submitted.
    • (2004) Technical Report
    • Calafiore, G.1    Campi, M.C.2
  • 11
    • 0032340223 scopus 로고    scopus 로고
    • Parameter estimation in the presence of bounded data uncertainties
    • S. Chandrasekaran, G. H. Golub, M. Gu, and A. H. Sayed. Parameter Estimation in the Presence of Bounded Data Uncertainties. SIAM J. Matrix Anal. Appl, 19(1):235-252, 1998.
    • (1998) SIAM J. Matrix Anal. Appl , vol.19 , Issue.1 , pp. 235-252
    • Chandrasekaran, S.1    Golub, G.H.2    Gu, M.3    Sayed, A.H.4
  • 13
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 14
    • 5544258192 scopus 로고    scopus 로고
    • On constraint sampling in the linear programming approach to approximate dynamic programming
    • D. Pucci de Farias and B. Van Roy. On constraint sampling in the linear programming approach to approximate dynamic programming. Mathematics of Operations Research, 29(3):462-478, 2004.
    • (2004) Mathematics of Operations Research , vol.29 , Issue.3 , pp. 462-478
    • Pucci De Farias, D.1    Van Roy, B.2
  • 16
    • 0031536271 scopus 로고    scopus 로고
    • Robust solutions to least-squares problems with uncertain data
    • L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl., 18(4): 1035-1064, 1997.
    • (1997) SIAM J. Matrix Anal. Appl. , vol.18 , Issue.4 , pp. 1035-1064
    • El Ghaoui, L.1    Lebret, H.2
  • 18
    • 84898999127 scopus 로고    scopus 로고
    • Invariant pattern recognition by semidefinite programming machines
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors. MIT Press
    • T. Graepel and R. Herbrich. Invariant pattern recognition by semidefinite programming machines. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Graepel, T.1    Herbrich, R.2
  • 21
    • 33745149101 scopus 로고    scopus 로고
    • Nonparametric quantile regression
    • National ICT Australia, June
    • Q. V. Le, T. Sears, and A. J. Smola. Nonparametric quantile regression. Technical report, National ICT Australia, June 2005. Available at http://sml.nicta.com.au/~quoc.le.
    • (2005) Technical Report
    • Le, Q.V.1    Sears, T.2    Smola, A.J.3
  • 24
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415-446, 1909.
    • (1909) Philosophical Transactions of the Royal Society, London, A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 27
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
    • T. Schneider. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate, 14:853-871, 2001.
    • (2001) Journal of Climate , vol.14 , pp. 853-871
    • Schneider, T.1
  • 29
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11/12(1-4):625-653, 1999.
    • (1999) Optimization Methods and Software , vol.11-12 , Issue.1-4 , pp. 625-653
    • Sturm, J.F.1
  • 31
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Cambridge, MA. MIT Press
    • V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA, 1997. MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.J.3
  • 32
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. I. Jordan, editor. Kluwer Academic
    • C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. Kluwer Academic, 1998.
    • (1998) Learning and Inference in Graphical Models , pp. 599-621
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.