메뉴 건너뛰기




Volumn 42, Issue SUPPL. 2, 2011, Pages 147-155

LS-SVR method of ore grade estimation in Solwara 1 region with missing data

Author keywords

Genetic algorithm; Grade estimation; LS SVR; Missing data; WKNN

Indexed keywords

ACCURATE ESTIMATION; DATA PREPROCESSING; DATA SEGMENTATION; ESTIMATION PROBLEM; GEOSTATISTICAL TECHNIQUES; INVERSE DISTANCE WEIGHT; K-NEAREST NEIGHBORS; KRIGING; LEAST SQUARES SUPPORT VECTOR REGRESSION; LS-SVR; MISSING DATA; MISSING VALUES; NEURAL NETWORK METHOD; NON-LINEAR METHODS; ORDINARY KRIGING; ORE GRADES; RARE METALS; RBF NEURAL NETWORK; SEA FLOOR; WKNN;

EID: 82055194240     PISSN: 16727207     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (15)
  • 1
    • 33845585427 scopus 로고    scopus 로고
    • An uncertainty oriented fuzzy methodology for grade estimation
    • Tutmez B. An uncertainty oriented fuzzy methodology for grade estimation[J]. Computers and Geosciences, 2007, 33(2): 280-288.
    • (2007) Computers and Geosciences , vol.33 , Issue.2 , pp. 280-288
    • Tutmez, B.1
  • 2
    • 77952419473 scopus 로고    scopus 로고
    • Radial basis function network for ore grade estimation
    • Samanta B. Radial basis function network for ore grade estimation[J]. Natural Resources Research, 2010, 19(2): 91-102.
    • (2010) Natural Resources Research , vol.19 , Issue.2 , pp. 91-102
    • Samanta, B.1
  • 3
    • 0033081648 scopus 로고    scopus 로고
    • Artificial neural network application for a predictive task in mining
    • Yama B R, Lineberry G T. Artificial neural network application for a predictive task in mining[J]. Mining Eng, 1999, 51(2): 59-64.
    • (1999) Mining Eng , vol.51 , Issue.2 , pp. 59-64
    • Yama, B.R.1    Lineberry, G.T.2
  • 4
    • 33745298172 scopus 로고    scopus 로고
    • Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics
    • Samanta B, Bandopadhyay S, Ganguli R, et al. Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics[J]. Mining Explor Geol, 2002, 11(1-4): 69-76.
    • (2002) Mining Explor Geol , vol.11 , Issue.1-4 , pp. 69-76
    • Samanta, B.1    Bandopadhyay, S.2    Ganguli, R.3
  • 5
    • 0027578284 scopus 로고
    • Reserve estimation using neural network techniques
    • Wu X, Zhou Y. Reserve estimation using neural network techniques[J]. Comput Geosci, 1993, 19(4): 567-575.
    • (1993) Comput Geosci , vol.19 , Issue.4 , pp. 567-575
    • Wu, X.1    Zhou, Y.2
  • 6
    • 67650550498 scopus 로고    scopus 로고
    • Construction of a radial basis function network using an evolutionary algorithm for grade estimation in a placer gold deposit
    • Samanta B, Bandopadhyay S. Construction of a radial basis function network using an evolutionary algorithm for grade estimation in a placer gold deposit[J]. Computers & Geosciences, 2009, 35(8): 1592-1602.
    • (2009) Computers & Geosciences , vol.35 , Issue.8 , pp. 1592-1602
    • Samanta, B.1    Bandopadhyay, S.2
  • 7
    • 77952428938 scopus 로고    scopus 로고
    • Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study
    • Anazi A F A L, Gates I D. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study[J]. Computers & Geosciences, 2010, 36(2): 1494-1503.
    • (2010) Computers & Geosciences , vol.36 , Issue.2 , pp. 1494-1503
    • Anazi, A.F.A.L.1    Gates, I.D.2
  • 8
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • Rajasekaran S, Gayathri S, Lee T L. Support vector regression methodology for storm surge predictions[J]. Ocean Engineering, 2008, 35(16): 1578-1587.
    • (2008) Ocean Engineering , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.L.3
  • 9
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classiers
    • Suykens J A K, Vandewalle J. Least squares support vector machine classiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2: 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 11
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A J, Schölkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 12
    • 67349260019 scopus 로고    scopus 로고
    • Prediction of flashover voltage of insulators using least squares support vector machines
    • Gencoglu M T, Uyar M. Prediction of flashover voltage of insulators using least squares support vector machines[J]. Expert Systems with Applications, 2009, 36: 10789-10798.
    • (2009) Expert Systems with Applications , vol.36 , pp. 10789-10798
    • Gencoglu, M.T.1    Uyar, M.2
  • 14
    • 77957130052 scopus 로고    scopus 로고
    • Missing data imputation using statistical and machine learning methods in a real breast cancer problem
    • Jerez J M, Molina I, García-Laencina P J, et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem[J]. Artificial Intelligence in Medicine, 2010, 50(2): 105-115.
    • (2010) Artificial Intelligence in Medicine , vol.50 , Issue.2 , pp. 105-115
    • Jerez, J.M.1    Molina, I.2    García-Laencina, P.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.