메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 841-854

A rainfall forecasting method using machine learning models and its application to the fukuoka city case

Author keywords

Machine learning; Model ranking; Multi model method; Pre processing; Rainfall forecasting

Indexed keywords

AVERAGE MUTUAL INFORMATION; LEAVE-ONE-OUT CROSS VALIDATIONS; LINEAR CORRELATION ANALYSIS; MULTI-MODEL METHOD; MULTIVARIATE ADAPTIVE REGRESSION SPLINES; PRE-PROCESSING; RAINFALL FORECASTING; SUPPORT VECTOR REGRESSION (SVR);

EID: 84876555400     PISSN: None     EISSN: 1641876X     Source Type: Journal    
DOI: 10.2478/v10006-012-0062-1     Document Type: Article
Times cited : (70)

References (42)
  • 1
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart, R.J. and See, L. (2002). Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments, Hydrology and Earth System Sciences 6(4): 655-670.
    • (2002) Hydrology and Earth System Sciences , vol.6 , Issue.4 , pp. 655-670
    • Abrahart, R.J.1    See, L.2
  • 2
    • 80053917912 scopus 로고    scopus 로고
    • Hybrid classification ensemble using topology-preserving clustering
    • Baruque, B., Porras, S. and Corchado, E. (2011). Hybrid classification ensemble using topology-preserving clustering, New Generation Computing 29(3): 329-344.
    • (2011) New Generation Computing , vol.29 , Issue.3 , pp. 329-344
    • Baruque, B.1    Porras, S.2    Corchado, E.3
  • 6
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson, C.W. and Wilby, R.L. (2001). Hydrological modelling using artificial neural networks, Progress in Physical Geography 25(1): 80-108.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 7
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • De Vos, N.J. and Rientjes, T.H.M. (2005). Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation, Hydrology and Earth System Sciences 9(1-2): 111-126.
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.1-2 , pp. 111-126
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 11
    • 59249095760 scopus 로고    scopus 로고
    • Ensemble data mining approaches to forecast regional sugarcane crop production
    • Everingham, Y.L., Smyth, C.W. and Inman-Bamber, N.G. (2009). Ensemble data mining approaches to forecast regional sugarcane crop production, Agricultural and Forest Meteorology 149(3-4): 689-696.
    • (2009) Agricultural and Forest Meteorology , vol.149 , Issue.3-4 , pp. 689-696
    • Everingham, Y.L.1    Smyth, C.W.2    Inman-Bamber, N.G.3
  • 12
    • 62249204357 scopus 로고    scopus 로고
    • Least angle regression and LASSO for large datasets
    • Fraley, C. and Hesterberg, T. (2009). Least angle regression and LASSO for large datasets, Statistical Analysis and Data Mining 1(4): 251-259.
    • (2009) Statistical Analysis and Data Mining , vol.1 , Issue.4 , pp. 251-259
    • Fraley, C.1    Hesterberg, T.2
  • 13
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • Fraser, A.M. and Swinney, H.L. (1986). Independent coordinates for strange attractors from mutual information, Physical Review A 33(2): 1134-1140.
    • (1986) Physical Review A , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 14
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J.H. (1991). Multivariate adaptive regression splines, Annals of Statistics 19(1): 1-67.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 15
    • 80053306318 scopus 로고    scopus 로고
    • A novel neural network ensemble architecture for time series forecasting
    • Gheyas, I.A. and Smith, L.S. (2011). A novel neural network ensemble architecture for time series forecasting, Neurocomputing 74(18): 3855-3864.
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3855-3864
    • Gheyas, I.A.1    Smith, L.S.2
  • 17
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Hong, W. (2008). Rainfall forecasting by technological machine learning models, Applied Mathematics and Computation 200(1): 41-57.
    • (2008) Applied Mathematics and Computation , vol.200 , Issue.1 , pp. 41-57
    • Hong, W.1
  • 19
    • 33745068015 scopus 로고    scopus 로고
    • Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms
    • Kim, T., Heo, J.-H. and Jeong, C.-S. (2006). Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms, Hydrological Processes 20(9): 2057-2075.
    • (2006) Hydrological Processes , vol.20 , Issue.9 , pp. 2057-2075
    • Kim, T.1    Heo, J.-H.2    Jeong, C.-S.3
  • 20
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model, 2: Application and results
    • Kitanidis, P.K. and Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model, 2: Application and results, Water Resources Research 16(6): 1034-1044.
    • (1980) Water Resources Research , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 22
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates, D.R. and McCabe, G.J. (1999). Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation, Water Resources Research 35(1): 233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 23
    • 6444243322 scopus 로고    scopus 로고
    • Short-range quantitative precipitation forecasting in Hong Kong
    • Li, P.W. and Lai, E.S.T. (2004). Short-range quantitative precipitation forecasting in Hong Kong, Development 288(1-2): 189-209.
    • (2004) Development , vol.288 , Issue.1-2 , pp. 189-209
    • Li, P.W.1    Lai, E.S.T.2
  • 25
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, I: A discussion of principles
    • Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models, I: A discussion of principles, Journal of Hydrology 10(3): 282-290.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.1    Sutcliffe, J.2
  • 27
    • 79955061915 scopus 로고    scopus 로고
    • A statistically dependent approach for the monthly rainfall forecast from one point observations
    • in D. Li and Z. Chunjiang (Eds.), IFIP Advances in Information and Communication Technology, Vol. 294 Springer, Boston, MA
    • Pucheta, J., Patino, D. and Kuchen, B. (2009). A statistically dependent approach for the monthly rainfall forecast from one point observations, in D. Li and Z. Chunjiang (Eds.), Computer and Computing Technologies in Agriculture II, Volume 2, IFIP Advances in Information and Communication Technology, Vol. 294, Springer, Boston, MA, pp. 787-798.
    • (2009) Computer and Computing Technologies in Agriculture II , vol.2 , pp. 787-798
    • Pucheta, J.1    Patino, D.2    Kuchen, B.3
  • 28
    • 0347948988 scopus 로고    scopus 로고
    • Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation
    • Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation, Journal of Econometrics 99(1): 39-61.
    • (2000) Journal of Econometrics , vol.99 , Issue.1 , pp. 39-61
    • Racine, J.1
  • 29
    • 69149109466 scopus 로고    scopus 로고
    • Ensemble neural network approach for accurate load forecasting in a power system
    • DOI 102478/v10006-009-0026-0032
    • Siwek, K., Osowski, S., Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, International Journal of Applied Mathematics and Computer Science 19(2): 303-315, DOI: 10.2478/v10006-009-0026-2.
    • (2009) International Journal of Applied Mathematics and Computer Science , vol.19 , Issue.2 , pp. 303-315
    • Siwek, K.1    Osowski, S.2    Szupiluk, R.3
  • 31
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Scholkopf, B. and Smola, A.J. (2004). A tutorial on support vector regression, Statistics and Computing 14(3): 199-122.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-122
    • Scholkopf, B.1    Smola, A.J.2
  • 32
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha, D.L. and Solomatine, D.P. (2006). Machine learning approaches for estimation of prediction interval for the model output, Neural Networks 19(2): 225-235.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 33
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D.P. and Ostfeld, A. (2008). Data-driven modelling: Some past experiences and new approaches, Journal of Hydroinformatics 10(1): 3.
    • (2008) Journal of Hydroinformatics , vol.10 , Issue.1 , pp. 3
    • Solomatine, D.P.1    Ostfeld, A.2
  • 34
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K.P., Gosain, A.K. and Ramasastri, K.S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrological Processes 16(6): 1325-1330.
    • (2002) Hydrological Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 36
    • 67649372714 scopus 로고    scopus 로고
    • Forecast combinations
    • in G. Elliott, C. Granger and A. Timmermann (Eds.) Elsevier, Amsterdam, Chapter 4
    • Timmermann, A. (2006). Forecast combinations, in G. Elliott, C. Granger and A. Timmermann (Eds.), Handbook of Economic Forecasting, Elsevier, Amsterdam, Chapter 4, pp. 135-196.
    • (2006) Handbook of Economic Forecasting , pp. 135-196
    • Timmermann, A.1
  • 37
    • 79956370913 scopus 로고    scopus 로고
    • Forecasting the NN5 time series with hybrid models
    • Wichard, J. (2011). Forecasting the NN5 time series with hybrid models, International Journal of Forecasting 27(3): 700-707.
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 700-707
    • Wichard, J.1
  • 38
    • 34249713801 scopus 로고    scopus 로고
    • Time series prediction with ensemble models applied to the CATS benchmark
    • Wichard, J. and Ogorzalek, M. (2007). Time series prediction with ensemble models applied to the CATS benchmark, Neurocomputing 70(13-15): 2371-2378.
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2371-2378
    • Wichard, J.1    Ogorzalek, M.2
  • 39
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu, C., Chau, K. and Li, Y. (2008). River stage prediction based on a distributed support vector regression, Journal of Hydrology 358(1-2): 96-111.
    • (2008) Journal of Hydrology , vol.358 , Issue.1-2 , pp. 96-111
    • Wu, C.1    Chau, K.2    Li, Y.3
  • 40
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • Xiong, L., Shamseldin, A. Y. and Oconnor, K. (2001). A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system, Journal of Hydrology 245(1-4): 196-217.
    • (2001) Journal of Hydrology , vol.245 , Issue.1-4 , pp. 196-217
    • Xiong, L.1    Shamseldin, A.Y.2    Oconnor, K.3
  • 41
    • 33750532572 scopus 로고    scopus 로고
    • A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis
    • Yang, Y., Lin, H., Guo, Z. and Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis, Computers Geosciences 33(1): 20-30.
    • (2007) Computers Geosciences , vol.33 , Issue.1 , pp. 20-30
    • Yang, Y.1    Lin, H.2    Guo, Z.3    Jiang, J.4
  • 42
    • 80053918498 scopus 로고    scopus 로고
    • Classification performance of bagging and boosting type ensemble methods with small training sets
    • Zaman, M. and Hirose, H. (2011). Classification performance of bagging and boosting type ensemble methods with small training sets, New Generation Computing 29(3): 277-292.
    • (2011) New Generation Computing , vol.29 , Issue.3 , pp. 277-292
    • Zaman, M.1    Hirose, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.