-
1
-
-
0036698601
-
Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
-
Abrahart, R.J. and See, L. (2002). Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments, Hydrology and Earth System Sciences 6(4): 655-670.
-
(2002)
Hydrology and Earth System Sciences
, vol.6
, Issue.4
, pp. 655-670
-
-
Abrahart, R.J.1
See, L.2
-
2
-
-
80053917912
-
Hybrid classification ensemble using topology-preserving clustering
-
Baruque, B., Porras, S. and Corchado, E. (2011). Hybrid classification ensemble using topology-preserving clustering, New Generation Computing 29(3): 329-344.
-
(2011)
New Generation Computing
, vol.29
, Issue.3
, pp. 329-344
-
-
Baruque, B.1
Porras, S.2
Corchado, E.3
-
3
-
-
0346881149
-
Experimentally optimal ν in support vector regression for different noise models and parameter settings
-
Chalimourda, A., Scholkopf, B. and Smola, A.J. (2004). Experimentally optimal ν in support vector regression for different noise models and parameter settings, Neural Networks: The Official Journal of the International Neural Network Society 17(1): 127-41.
-
(2004)
Neural Networks: The Official Journal of the International Neural Network Society
, vol.17
, Issue.1
, pp. 127-41
-
-
Chalimourda, A.1
Scholkopf, B.2
Smola, A.J.3
-
5
-
-
14844292558
-
Improving daily reservoir inflow forecasts with model combination
-
Coulibaly, P., Hach'e, M., Fortin, V. and Bob'ee, B. (2005). Improving daily reservoir inflow forecasts with model combination, Journal of Hydrologic Engineering 10(2): 91.
-
(2005)
Journal of Hydrologic Engineering
, vol.10
, Issue.2
, pp. 91
-
-
Coulibaly, P.1
Hach'e, M.2
Fortin, V.3
Bob'ee, B.4
-
6
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson, C.W. and Wilby, R.L. (2001). Hydrological modelling using artificial neural networks, Progress in Physical Geography 25(1): 80-108.
-
(2001)
Progress in Physical Geography
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
7
-
-
23744444467
-
Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
-
De Vos, N.J. and Rientjes, T.H.M. (2005). Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation, Hydrology and Earth System Sciences 9(1-2): 111-126.
-
(2005)
Hydrology and Earth System Sciences
, vol.9
, Issue.1-2
, pp. 111-126
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
8
-
-
28444469456
-
Ensemble SVR for prediction of time series
-
Guangzhou, China
-
Deng, Y.-F., Jin, X. and Zhong, Y.-X. (2005). Ensemble SVR for prediction of time series, Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, Vol. 2, pp. 734-748.
-
(2005)
Proceedings of the International Conference on Machine Learning and Cybernetics
, vol.2
, pp. 734-748
-
-
Deng, Y.-F.1
Jin, X.2
Zhong, Y.-X.3
-
10
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression, Annals of Statistics 32(2): 407-499.
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
11
-
-
59249095760
-
Ensemble data mining approaches to forecast regional sugarcane crop production
-
Everingham, Y.L., Smyth, C.W. and Inman-Bamber, N.G. (2009). Ensemble data mining approaches to forecast regional sugarcane crop production, Agricultural and Forest Meteorology 149(3-4): 689-696.
-
(2009)
Agricultural and Forest Meteorology
, vol.149
, Issue.3-4
, pp. 689-696
-
-
Everingham, Y.L.1
Smyth, C.W.2
Inman-Bamber, N.G.3
-
12
-
-
62249204357
-
Least angle regression and LASSO for large datasets
-
Fraley, C. and Hesterberg, T. (2009). Least angle regression and LASSO for large datasets, Statistical Analysis and Data Mining 1(4): 251-259.
-
(2009)
Statistical Analysis and Data Mining
, vol.1
, Issue.4
, pp. 251-259
-
-
Fraley, C.1
Hesterberg, T.2
-
13
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
Fraser, A.M. and Swinney, H.L. (1986). Independent coordinates for strange attractors from mutual information, Physical Review A 33(2): 1134-1140.
-
(1986)
Physical Review A
, vol.33
, Issue.2
, pp. 1134-1140
-
-
Fraser, A.M.1
Swinney, H.L.2
-
14
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman, J.H. (1991). Multivariate adaptive regression splines, Annals of Statistics 19(1): 1-67.
-
(1991)
Annals of Statistics
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
15
-
-
80053306318
-
A novel neural network ensemble architecture for time series forecasting
-
Gheyas, I.A. and Smith, L.S. (2011). A novel neural network ensemble architecture for time series forecasting, Neurocomputing 74(18): 3855-3864.
-
(2011)
Neurocomputing
, vol.74
, Issue.18
, pp. 3855-3864
-
-
Gheyas, I.A.1
Smith, L.S.2
-
16
-
-
0003684449
-
-
2nd Edn., Springer, New York, NY
-
Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd Edn., Springer, New York, NY.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
17
-
-
43049181654
-
Rainfall forecasting by technological machine learning models
-
Hong, W. (2008). Rainfall forecasting by technological machine learning models, Applied Mathematics and Computation 200(1): 41-57.
-
(2008)
Applied Mathematics and Computation
, vol.200
, Issue.1
, pp. 41-57
-
-
Hong, W.1
-
19
-
-
33745068015
-
Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms
-
Kim, T., Heo, J.-H. and Jeong, C.-S. (2006). Multireservoir system optimization in the Han River basin using multi-objective genetic algorithms, Hydrological Processes 20(9): 2057-2075.
-
(2006)
Hydrological Processes
, vol.20
, Issue.9
, pp. 2057-2075
-
-
Kim, T.1
Heo, J.-H.2
Jeong, C.-S.3
-
20
-
-
0019227948
-
Real-time forecasting with a conceptual hydrologic model, 2: Application and results
-
Kitanidis, P.K. and Bras, R.L. (1980). Real-time forecasting with a conceptual hydrologic model, 2: Application and results, Water Resources Research 16(6): 1034-1044.
-
(1980)
Water Resources Research
, vol.16
, Issue.6
, pp. 1034-1044
-
-
Kitanidis, P.K.1
Bras, R.L.2
-
21
-
-
7044257283
-
-
2nd Edn.,World Scientific, Singapore
-
Lee, C.F., Lee, J.C. and Lee, A.C. (2000). Statistics for Business and Financial Economics, 2nd Edn.,World Scientific, Singapore.
-
(2000)
Statistics for Business and Financial Economics
-
-
Lee, C.F.1
Lee, J.C.2
Lee, A.C.3
-
22
-
-
0032920124
-
Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
-
Legates, D.R. and McCabe, G.J. (1999). Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation, Water Resources Research 35(1): 233-241.
-
(1999)
Water Resources Research
, vol.35
, Issue.1
, pp. 233-241
-
-
Legates, D.R.1
McCabe, G.J.2
-
23
-
-
6444243322
-
Short-range quantitative precipitation forecasting in Hong Kong
-
Li, P.W. and Lai, E.S.T. (2004). Short-range quantitative precipitation forecasting in Hong Kong, Development 288(1-2): 189-209.
-
(2004)
Development
, vol.288
, Issue.1-2
, pp. 189-209
-
-
Li, P.W.1
Lai, E.S.T.2
-
25
-
-
0014776873
-
River flow forecasting through conceptual models, I: A discussion of principles
-
Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models, I: A discussion of principles, Journal of Hydrology 10(3): 282-290.
-
(1970)
Journal of Hydrology
, vol.10
, Issue.3
, pp. 282-290
-
-
Nash, J.1
Sutcliffe, J.2
-
26
-
-
0004285636
-
-
6th Edn., Prentice Hall, Upper Saddle River, NJ
-
Newbold, P., Carlson, W. and Thorne, B. (2007). Statistics for Business and Economics, 6th Edn., Prentice Hall, Upper Saddle River, NJ.
-
(2007)
Statistics for Business and Economics
-
-
Newbold, P.1
Carlson, W.2
Thorne, B.3
-
27
-
-
79955061915
-
A statistically dependent approach for the monthly rainfall forecast from one point observations
-
in D. Li and Z. Chunjiang (Eds.), IFIP Advances in Information and Communication Technology, Vol. 294 Springer, Boston, MA
-
Pucheta, J., Patino, D. and Kuchen, B. (2009). A statistically dependent approach for the monthly rainfall forecast from one point observations, in D. Li and Z. Chunjiang (Eds.), Computer and Computing Technologies in Agriculture II, Volume 2, IFIP Advances in Information and Communication Technology, Vol. 294, Springer, Boston, MA, pp. 787-798.
-
(2009)
Computer and Computing Technologies in Agriculture II
, vol.2
, pp. 787-798
-
-
Pucheta, J.1
Patino, D.2
Kuchen, B.3
-
28
-
-
0347948988
-
Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation
-
Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: Hv-block cross-validation, Journal of Econometrics 99(1): 39-61.
-
(2000)
Journal of Econometrics
, vol.99
, Issue.1
, pp. 39-61
-
-
Racine, J.1
-
29
-
-
69149109466
-
Ensemble neural network approach for accurate load forecasting in a power system
-
DOI 102478/v10006-009-0026-0032
-
Siwek, K., Osowski, S., Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, International Journal of Applied Mathematics and Computer Science 19(2): 303-315, DOI: 10.2478/v10006-009-0026-2.
-
(2009)
International Journal of Applied Mathematics and Computer Science
, vol.19
, Issue.2
, pp. 303-315
-
-
Siwek, K.1
Osowski, S.2
Szupiluk, R.3
-
30
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
Scholkopf, B. and Smola, A.J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, Adaptive Computation and Machine Learning, Vol. 98, MIT Press, Cambridge, MA.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, Adaptive Computation and Machine Learning
, vol.98
-
-
Scholkopf, B.1
Smola, A.J.2
-
31
-
-
4043137356
-
A tutorial on support vector regression
-
Scholkopf, B. and Smola, A.J. (2004). A tutorial on support vector regression, Statistics and Computing 14(3): 199-122.
-
(2004)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-122
-
-
Scholkopf, B.1
Smola, A.J.2
-
32
-
-
33645987256
-
Machine learning approaches for estimation of prediction interval for the model output
-
Shrestha, D.L. and Solomatine, D.P. (2006). Machine learning approaches for estimation of prediction interval for the model output, Neural Networks 19(2): 225-235.
-
(2006)
Neural Networks
, vol.19
, Issue.2
, pp. 225-235
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
33
-
-
39449089195
-
Data-driven modelling: Some past experiences and new approaches
-
Solomatine, D.P. and Ostfeld, A. (2008). Data-driven modelling: Some past experiences and new approaches, Journal of Hydroinformatics 10(1): 3.
-
(2008)
Journal of Hydroinformatics
, vol.10
, Issue.1
, pp. 3
-
-
Solomatine, D.P.1
Ostfeld, A.2
-
34
-
-
0037197571
-
A data-driven algorithm for constructing artificial neural network rainfall-runoff models
-
Sudheer, K.P., Gosain, A.K. and Ramasastri, K.S. (2002). A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrological Processes 16(6): 1325-1330.
-
(2002)
Hydrological Processes
, vol.16
, Issue.6
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
35
-
-
84941189747
-
-
Georgia State University, Arlanta, GA, Paper 99
-
Syed, A.R. (2011). A review of cross validation and adaptive model selection, Statistics, Mathematics Theses, Georgia State University, Arlanta, GA, Paper 99.
-
(2011)
A Review of Cross Validation and Adaptive Model Selection, Statistics, Mathematics Theses
-
-
Syed, A.R.1
-
36
-
-
67649372714
-
Forecast combinations
-
in G. Elliott, C. Granger and A. Timmermann (Eds.) Elsevier, Amsterdam, Chapter 4
-
Timmermann, A. (2006). Forecast combinations, in G. Elliott, C. Granger and A. Timmermann (Eds.), Handbook of Economic Forecasting, Elsevier, Amsterdam, Chapter 4, pp. 135-196.
-
(2006)
Handbook of Economic Forecasting
, pp. 135-196
-
-
Timmermann, A.1
-
37
-
-
79956370913
-
Forecasting the NN5 time series with hybrid models
-
Wichard, J. (2011). Forecasting the NN5 time series with hybrid models, International Journal of Forecasting 27(3): 700-707.
-
(2011)
International Journal of Forecasting
, vol.27
, Issue.3
, pp. 700-707
-
-
Wichard, J.1
-
38
-
-
34249713801
-
Time series prediction with ensemble models applied to the CATS benchmark
-
Wichard, J. and Ogorzalek, M. (2007). Time series prediction with ensemble models applied to the CATS benchmark, Neurocomputing 70(13-15): 2371-2378.
-
(2007)
Neurocomputing
, vol.70
, Issue.13-15
, pp. 2371-2378
-
-
Wichard, J.1
Ogorzalek, M.2
-
39
-
-
47949121319
-
River stage prediction based on a distributed support vector regression
-
Wu, C., Chau, K. and Li, Y. (2008). River stage prediction based on a distributed support vector regression, Journal of Hydrology 358(1-2): 96-111.
-
(2008)
Journal of Hydrology
, vol.358
, Issue.1-2
, pp. 96-111
-
-
Wu, C.1
Chau, K.2
Li, Y.3
-
40
-
-
0035340544
-
A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
-
Xiong, L., Shamseldin, A. Y. and Oconnor, K. (2001). A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system, Journal of Hydrology 245(1-4): 196-217.
-
(2001)
Journal of Hydrology
, vol.245
, Issue.1-4
, pp. 196-217
-
-
Xiong, L.1
Shamseldin, A.Y.2
Oconnor, K.3
-
41
-
-
33750532572
-
A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis
-
Yang, Y., Lin, H., Guo, Z. and Jiang, J. (2007). A data mining approach for heavy rainfall forecasting based on satellite image sequence analysis, Computers Geosciences 33(1): 20-30.
-
(2007)
Computers Geosciences
, vol.33
, Issue.1
, pp. 20-30
-
-
Yang, Y.1
Lin, H.2
Guo, Z.3
Jiang, J.4
-
42
-
-
80053918498
-
Classification performance of bagging and boosting type ensemble methods with small training sets
-
Zaman, M. and Hirose, H. (2011). Classification performance of bagging and boosting type ensemble methods with small training sets, New Generation Computing 29(3): 277-292.
-
(2011)
New Generation Computing
, vol.29
, Issue.3
, pp. 277-292
-
-
Zaman, M.1
Hirose, H.2
|