메뉴 건너뛰기




Volumn 29, Issue 3, 2011, Pages 277-292

Classification performance of bagging and boosting type ensemble methods with small training sets

Author keywords

Bias variance decomposition; Classification performance; Small

Indexed keywords

BIAS AND VARIANCE; BIAS VARIANCE DECOMPOSITION; CLASSIFICATION ERRORS; CLASSIFICATION PERFORMANCE; DATA SETS; ENSEMBLE METHODS; OPTIMAL ENSEMBLE; OPTIMAL TRAINING; RESAMPLING; SMALL; SMALL TRAINING; TRAINING SAMPLE; TRAINING SETS; UCI MACHINE LEARNING REPOSITORY;

EID: 80053918498     PISSN: 02883635     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00354-011-0303-0     Document Type: Article
Times cited : (25)

References (19)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. and Kohavi, R., "An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, " Machine Learn., 36, 1-2, pp. 105-139, 1999.
    • (1999) Machine Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., "Bagging predictors, " Machine Learn., 24, 2, pp. 123-140, 1996.
    • (1996) Machine Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., "Random Forests, " Machine Learn., 45, 1, pp. 5-32, 2001.
    • (2001) Machine Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple datasets
    • Demšar, J., "Statistical comparisons of classifiers over multiple datasets, " J. Mach. Learn. Research, 7, pp. 1-30, 2006.
    • (2006) J. Mach. Learn. Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 10
    • 19044398807 scopus 로고    scopus 로고
    • Bundling classifiers by bagging trees
    • Hothorn, T. and Lausen, B., "Bundling classifiers by bagging trees, " Comput. Statist. Data Anal., 49, pp. 1068-1078, 2005.
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 1068-1078
    • Hothorn, T.1    Lausen, B.2
  • 11
    • 26444516836 scopus 로고    scopus 로고
    • Combining pattern classifiers
    • John Wiley and Sons
    • Kuncheva, L. I., Combining Pattern Classifiers, Methods and Algorithms, John Wiley and Sons, 2004.
    • (2004) Methods and Algorithms
    • Kuncheva, L.I.1
  • 12
    • 68949164781 scopus 로고    scopus 로고
    • Out-of-bag estimation of the optimal sample size in bagging
    • Martínez-Munõz, G. and Suárez, A., "Out-of-bag estimation of the optimal sample size in bagging, " Pattern Recognition, 43, 1, pp. 143-152, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.1 , pp. 143-152
    • Martínez-Munõz, G.1    Suárez, A.2
  • 13
    • 0004188510 scopus 로고    scopus 로고
    • Springer Series in Statistics, Springer, Berlin
    • Politis, D., Romano, J. P. and Wolf, M., Subsampling, Springer Series in Statistics, Springer, Berlin, 1999.
    • (1999) Subsampling
    • Politis, D.1    Romano, J.P.2    Wolf, M.3
  • 16
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • Webb, G. I., "MultiBoosting: A technique for combining boosting and wagging, " Machine Learn., 40, 2, pp. 159-196, 2000.
    • (2000) Machine Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 19
    • 39049086240 scopus 로고    scopus 로고
    • An efficient modified boosting method for solving classification problems
    • Zhang, C. X., Zhang, J. S. and Zhang, G. Y., "An efficient modified boosting method for solving classification problems, " J. Comput. Applied Mathemat., 214, pp. 381-392, 2008.
    • (2008) J. Comput. Applied Mathemat. , vol.214 , pp. 381-392
    • Zhang, C.X.1    Zhang, J.S.2    Zhang, G.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.