메뉴 건너뛰기




Volumn 200, Issue 1, 2008, Pages 41-57

Rainfall forecasting by technological machine learning models

Author keywords

Chaotic particle swarm optimization algorithm (CPSO); Machine learning; Rainfall forecasting; Recurrent SVR; Support vector regression (SVR)

Indexed keywords

ALGORITHMS; PARTICLE SWARM OPTIMIZATION (PSO); RAIN; REGRESSION ANALYSIS; WEATHER FORECASTING;

EID: 43049181654     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2007.10.046     Document Type: Article
Times cited : (194)

References (43)
  • 1
    • 0002091779 scopus 로고
    • Hydrology forecasting
    • Maidment D.R. (Ed), McGraw-Hill, New York
    • Lettenmaier D.P., and Wood E.F. Hydrology forecasting. In: Maidment D.R. (Ed). Handbook of Hydrology (1993), McGraw-Hill, New York
    • (1993) Handbook of Hydrology
    • Lettenmaier, D.P.1    Wood, E.F.2
  • 2
    • 43049153815 scopus 로고    scopus 로고
    • Q. Duan, A global optimization strategy for efficient and effective calibration of hydrologic models, Ph.D. dissertation, University of Arizona, Tucson, 1991.
    • Q. Duan, A global optimization strategy for efficient and effective calibration of hydrologic models, Ph.D. dissertation, University of Arizona, Tucson, 1991.
  • 3
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. An application of artificial neural networks for rainfall forecasting. Mathematical and Computer Modelling 33 6-7 (2001) 683-693
    • (2001) Mathematical and Computer Modelling , vol.33 , Issue.6-7 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 4
    • 0035426091 scopus 로고    scopus 로고
    • Insights from a history of seasonal inflow forecasting with a conceptual hydrologic model
    • Druce D.J. Insights from a history of seasonal inflow forecasting with a conceptual hydrologic model. Journal of Hydrology 249 1-4 (2001) 102-112
    • (2001) Journal of Hydrology , vol.249 , Issue.1-4 , pp. 102-112
    • Druce, D.J.1
  • 5
    • 4143088268 scopus 로고    scopus 로고
    • Evaluation of a physics-based distributed hydrologic model for flood forecasting
    • Vieux B.E., Cui Z., and Gaur A. Evaluation of a physics-based distributed hydrologic model for flood forecasting. Journal of Hydrology 298 1-4 (2004) 155-177
    • (2004) Journal of Hydrology , vol.298 , Issue.1-4 , pp. 155-177
    • Vieux, B.E.1    Cui, Z.2    Gaur, A.3
  • 6
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data
    • Yapo P., Gupta V.K., and Sorooshian S. Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology 181 1-4 (1996) 23-48
    • (1996) Journal of Hydrology , vol.181 , Issue.1-4 , pp. 23-48
    • Yapo, P.1    Gupta, V.K.2    Sorooshian, S.3
  • 7
    • 0028449781 scopus 로고
    • Optimal use of sce-ua global optimization method for calibrating watershed models
    • Duan Q., Sorooshian S., and Gupta V.K. Optimal use of sce-ua global optimization method for calibrating watershed models. Journal of Hydrology 158 3-4 (1994) 265-284
    • (1994) Journal of Hydrology , vol.158 , Issue.3-4 , pp. 265-284
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 9
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French M.N., Krajewski W.F., and Cuykendall R.R. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137 1-4 (1992) 1-31
    • (1992) Journal of Hydrology , vol.137 , Issue.1-4 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 10
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227 1-4 (2000) 56-65
    • (2000) Journal of Hydrology , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 11
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to The São Paulo Region
    • Valverde Ramírez M.C., de Campos Velho H.F., and Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to The São Paulo Region. Journal of Hydrology 301 1-4 (2005) 146-162
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 146-162
    • Valverde Ramírez, M.C.1    de Campos Velho, H.F.2    Ferreira, N.J.3
  • 12
    • 3242769911 scopus 로고    scopus 로고
    • State space neural networks for short term rainfall-runoff forecasting
    • Pan T.Y., and Wang R.Y. State space neural networks for short term rainfall-runoff forecasting. Journal of Hydrology 297 1-4 (2004) 34-50
    • (2004) Journal of Hydrology , vol.297 , Issue.1-4 , pp. 34-50
    • Pan, T.Y.1    Wang, R.Y.2
  • 13
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin G.F., and Chen L.H. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289 1-4 (2004) 1-8
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 14
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang Y.M., Chang L.C., and Chang F.J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290 3-4 (2004) 297-311
    • (2004) Journal of Hydrology , vol.290 , Issue.3-4 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 16
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ann input for stream flow forecasting
    • Anctil F., Michel C., Perrin C., and Andréassian V. A soil moisture index as an auxiliary ann input for stream flow forecasting. Journal of Hydrology 286 1-4 (2004) 155-167
    • (2004) Journal of Hydrology , vol.286 , Issue.1-4 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andréassian, V.4
  • 17
    • 0036179359 scopus 로고    scopus 로고
    • A neural network model to predict the wastewater inflow incorporating rainfall events
    • El-Din A.G., and Smith D.W. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research 36 5 (2002) 1115-1126
    • (2002) Water Research , vol.36 , Issue.5 , pp. 1115-1126
    • El-Din, A.G.1    Smith, D.W.2
  • 18
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F.E.H., and Cao L. Application of support vector machines in financial time series forecasting. OMEGA - International Journal of Management Science 29 4 (2001) 309-317
    • (2001) OMEGA - International Journal of Management Science , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 19
    • 0037255890 scopus 로고    scopus 로고
    • Three improved neural network models for air quality forecasting
    • Wang W., Xu Z., and Lu J.W. Three improved neural network models for air quality forecasting. Engineering Computations 20 2 (2003) 192-210
    • (2003) Engineering Computations , vol.20 , Issue.2 , pp. 192-210
    • Wang, W.1    Xu, Z.2    Lu, J.W.3
  • 20
    • 84863268449 scopus 로고    scopus 로고
    • Dynamic support vector machines for non-stationary time series forecasting
    • Cao L., and Gu Q. Dynamic support vector machines for non-stationary time series forecasting. Intelligent Data Analysis 6 1 (2002) 67-83
    • (2002) Intelligent Data Analysis , vol.6 , Issue.1 , pp. 67-83
    • Cao, L.1    Gu, Q.2
  • 21
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay F.E.H., and Cao L. Modified support vector machines in financial time series forecasting. Neurocomputing 48 1-4 (2002) 847-861
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.2
  • 22
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. Support vector machines experts for time series forecasting. Neurocomputing 51 (2003) 321-339
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 24
    • 27944432882 scopus 로고    scopus 로고
    • Using support vector machines in forecasting production values of machinery industry in Taiwan
    • Pai P.F., and Lin C.S. Using support vector machines in forecasting production values of machinery industry in Taiwan. International Journal of Advanced Manufacturing Technology 27 1-2 (2004) 205-210
    • (2004) International Journal of Advanced Manufacturing Technology , vol.27 , Issue.1-2 , pp. 205-210
    • Pai, P.F.1    Lin, C.S.2
  • 25
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai P.F., and Lin C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. OMEGA - International Journal of Management Science 33 6 (2005) 497-505
    • (2005) OMEGA - International Journal of Management Science , vol.33 , Issue.6 , pp. 497-505
    • Pai, P.F.1    Lin, C.S.2
  • 26
    • 0028397218 scopus 로고
    • Using recurrent neural networks for adaptive communication channel equalization
    • Kechriotis G., Zervas E., and Manolakos E.S. Using recurrent neural networks for adaptive communication channel equalization. IEEE Transaction on Neural Networks 5 2 (1994) 267-278
    • (1994) IEEE Transaction on Neural Networks , vol.5 , Issue.2 , pp. 267-278
    • Kechriotis, G.1    Zervas, E.2    Manolakos, E.S.3
  • 27
    • 43049156978 scopus 로고    scopus 로고
    • M.I. Jordan, Attractor dynamics and parallelism in a connectionist sequential machine, in: Proceeding of 8th Annual Conference of the Cognitive Science Society, Hillsdale, 1987, pp. 531-546.
    • M.I. Jordan, Attractor dynamics and parallelism in a connectionist sequential machine, in: Proceeding of 8th Annual Conference of the Cognitive Science Society, Hillsdale, 1987, pp. 531-546.
  • 28
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 14 2 (1990) 179-211
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 29
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R., and Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1 (1989) 270-280
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 30
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks: a critical review of architectures
    • Tsoi A.C., and Back A.D. Locally recurrent globally feedforward networks: a critical review of architectures. IEEE Transaction on Neural Networks 5 2 (1994) 229-239
    • (1994) IEEE Transaction on Neural Networks , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.C.1    Back, A.D.2
  • 34
    • 0029535737 scopus 로고    scopus 로고
    • J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceeding of IEEE International Conference Neural Networks, 1995, pp. 1942-1948.
    • J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceeding of IEEE International Conference Neural Networks, 1995, pp. 1942-1948.
  • 35
    • 0034863568 scopus 로고    scopus 로고
    • R.C. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in: Proceeding of the 2001 Congress on Evolutionary Computation, 2001, pp. 81-86.
    • R.C. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in: Proceeding of the 2001 Congress on Evolutionary Computation, 2001, pp. 81-86.
  • 36
    • 84919713045 scopus 로고    scopus 로고
    • P.J. Angeline, Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, Evolutionary Programming VII (Proceedings of the Seventh Annual Conference on Evolutionary Programming), 1998, pp. 601-610.
    • P.J. Angeline, Evolutionary optimization versus particle swarm optimization: philosophy and performance differences, Evolutionary Programming VII (Proceedings of the Seventh Annual Conference on Evolutionary Programming), 1998, pp. 601-610.
  • 37
  • 38
    • 33845866875 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization for economic dispatch considering the generator constraints
    • Cai J., Ma X., Li L., and Peng H. Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Conversion and Management 48 2 (2007) 645-653
    • (2007) Energy Conversion and Management , vol.48 , Issue.2 , pp. 645-653
    • Cai, J.1    Ma, X.2    Li, L.3    Peng, H.4
  • 40
    • 0000809163 scopus 로고    scopus 로고
    • Nonlinear modeling and prediction with feedforward and recurrent networks
    • Gencay R., and Liu T. Nonlinear modeling and prediction with feedforward and recurrent networks. Physica D: Nonlinear Phenomena 108 1-2 (1997) 119-134
    • (1997) Physica D: Nonlinear Phenomena , vol.108 , Issue.1-2 , pp. 119-134
    • Gencay, R.1    Liu, T.2
  • 41
    • 0032495049 scopus 로고    scopus 로고
    • Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities
    • Kermanshahi B. Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities. Neurocomputing 23 1-3 (1998) 125-133
    • (1998) Neurocomputing , vol.23 , Issue.1-3 , pp. 125-133
    • Kermanshahi, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.