-
1
-
-
28344455955
-
An artificial neural network model for generating hydrograph from hydro-meteorological parameters
-
Ahmad, S. & S.P. Simonovic. 2005. An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J. Hydrol., 315: 236-251.
-
(2005)
J. Hydrol
, vol.315
, pp. 236-251
-
-
Ahmad, S.1
Simonovic, S.P.2
-
2
-
-
77952261780
-
A modified conjugate gradient formula for back propagation neural network algorithm
-
Al-Bayati, A., N.A. Sulaiman & G.W. Sadiq. 2009. A modified conjugate gradient formula for back propagation neural network algorithm. J. Comp. Sci., 5(11): 849-856.
-
(2009)
J. Comp. Sci
, vol.5
, Issue.11
, pp. 849-856
-
-
Al-Bayati, A.1
Sulaiman, N.A.2
Sadiq, G.W.3
-
4
-
-
12544253180
-
Flow prediction by three back propagation techniques using kfold partitioning of neural network training data
-
Cigizoglu, H.K. & O. Kisi. 2005. Flow prediction by three back propagation techniques using kfold partitioning of neural network training data. Nordic Hydrol., 36(1): 1-16.
-
(2005)
Nordic Hydrol
, vol.36
, Issue.1
, pp. 1-16
-
-
Cigizoglu, H.K.1
Kisi, O.2
-
5
-
-
0032829433
-
Prevision hydrologique par reseaux de neurons artificiels: État de l'Art
-
Coulibaly, P., F. Anctil & B. Bobee. 1999. Prevision hydrologique par reseaux de neurons artificiels: état de l'art. Can. J. Civil Eng., 26: 293-304.
-
(1999)
Can J. Civil Eng
, vol.26
, pp. 293-304
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
6
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
Coulibaly, P., F. Anctil & B. Bobee. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol., 230: 244-257.
-
(2000)
J. Hydrol
, vol.230
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
7
-
-
0035450182
-
Multivariate reservoir inflow forecasting using temporal neural networks
-
Coulibaly, P., F. Anctil & B. Bobee. 2001a. Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng., 6(5): 367-376.
-
(2001)
J. Hydrol. Eng
, vol.6
, Issue.5
, pp. 367-376
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
8
-
-
0035876630
-
Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
-
Coulibaly, P., B. Bobee & F. Anctil. 2001b. Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrol. Process., 15: 1533-1536.
-
(2001)
Hydrol Process
, vol.15
, pp. 1533-1536
-
-
Coulibaly, P.1
Bobee, B.2
Anctil, F.3
-
9
-
-
0024861871
-
Approximation by superposition of a sigmoidal function
-
Cybenko, G. 1989. Approximation by superposition of a sigmoidal function. Math. Control Signal, 2: 303-314.
-
(1989)
Math. Control Signal
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
10
-
-
0038502200
-
Artificial neural networks for streamflow prediction
-
Dolling, O.R. & E. Varas. 2002. Artificial neural networks for streamflow prediction. J. Hydraul. Res., 40(5): 547-554.
-
(2002)
J. Hydraul. Res
, vol.40
, Issue.5
, pp. 547-554
-
-
Dolling, O.R.1
Varas, E.2
-
11
-
-
84856625177
-
Effect of flow forecasting quality on benefits of reservoir operationa case study for the Geheyan reservoir (China)
-
Dong, X., C.M. Dohmen-Janssen, M. Booij & S. Hulscher. 2006. Effect of flow forecasting quality on benefits of reservoir operationa case study for the Geheyan reservoir (China). Hydrol. Earth Syst. Sci. Discuss., 3: 3771-3814.
-
(2006)
Hydrol. Earth Syst. Sci. Discuss
, vol.3
, pp. 3771-3814
-
-
Dong, X.1
Dohmen-Janssen, C.M.2
Booij, M.S.3
Hulscher4
-
13
-
-
0001818563
-
Effective and efficient ANN modeling for streamflow forecast-ting. Chapter 1 of artificial neural networks
-
R.S. Govindaraju & A.R. Rao (eds.), Kluwer Academic Publishers, The Netherlands
-
Gupta, H.V., K. Hsu & S. Sorooshian. 2000. Effective and efficient ANN modeling for streamflow forecast-ting. Chapter 1 of artificial neural networks. In: R.S. Govindaraju & A.R. Rao (eds.). Hydrology. Kluwer Academic Publishers, The Netherlands, pp. 7-22.
-
(2000)
Hydrology
, pp. 7-22
-
-
Gupta, H.V.1
Hsu, K.2
Sorooshian, S.3
-
14
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., M. Stinchcombe & H. White. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
15
-
-
0029413797
-
Artificial neural network modelling of rainfall-runoff process
-
Hsu, K., H.V. Gupta & S. Sorooshian. 1995. Artificial neural network modelling of rainfall-runoff process. Water Resour. Res., 31: 2517-2530.
-
(1995)
Water Resour. Res
, vol.31
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
16
-
-
0033197895
-
Application of ANN for reservoir inflow prediction and operation
-
Jain, S.K., D. Das & D.K. Srivastava. 1999. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Planning Manag., ASCE, 125: 263-271.
-
(1999)
J. Water Resour. Planning Manag., ASCE
, vol.125
, pp. 263-271
-
-
Jain, S.K.1
Das, D.2
Srivastava, D.K.3
-
17
-
-
0028667489
-
Neural networks for river flow prediction
-
Karunanithi, N., W.J. Grenney, D. Whitley & K. Bovee. 1994. Neural networks for river flow prediction. J. Comp. Civil Eng., ASCE, 8(2): 201-220.
-
(1994)
J. Comp. Civil Eng., ASCE
, vol.8
, Issue.2
, pp. 201-220
-
-
Karunanithi, N.1
Grenney, W.J.2
Whitley, D.3
Bovee, K.4
-
18
-
-
1642497522
-
River flow modeling using artificial neural networks
-
Kisi, O. 2004. River flow modeling using artificial neural networks. J. Hydrol. Eng., ASCE, 9(1): 60-63.
-
(2004)
J. Hydrol. Eng., ASCE
, vol.9
, Issue.1
, pp. 60-63
-
-
Kisi, O.1
-
19
-
-
34548425056
-
Comparison of different ANN techniques in river flow prediction
-
Kisi, O. & H.K.Cigizoglu. 2007. Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst., 24(3): 211-231.
-
(2007)
Civ. Eng. Environ. Syst
, vol.24
, Issue.3
, pp. 211-231
-
-
Kisi, O.1
-
20
-
-
0035426007
-
The case for probabilistic forecasting in hydrology
-
Krzysztofowicz, R. 2001. The case for probabilistic forecasting in hydrology. J. Hydrol., 249: 2-9.
-
(2001)
J. Hydrol
, vol.249
, pp. 2-9
-
-
Krzysztofowicz, R.1
-
21
-
-
0036846999
-
Bayesian system for probabilistic river stage forecasting
-
Krzysztofowicz, R.2002. Bayesian system for probabilistic river stage forecasting. J. Hydrol., 268: 16-40.
-
(2002)
J. Hydrol
, vol.268
, pp. 16-40
-
-
Krzysztofowicz, R.1
-
23
-
-
0033209687
-
Improving the convergence of the back propagation algorithm using learning rate adaptation methods
-
Magoulas, G.D., M.N. Hrahatis & G.S. Androulakis. 1999. Improving the convergence of the back propagation algorithm using learning rate adaptation methods. Neural Comput., 11: 1769-1796.
-
(1999)
Neural Comput
, vol.11
, pp. 1769-1796
-
-
Magoulas, G.D.1
Hrahatis, M.N.2
Androulakis, G.S.3
-
24
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
Maier, H.R. & G.C. Dandy. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw., 15: 101-124.
-
(2000)
Environ Modell. Softw
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
25
-
-
0031171262
-
Prediction of two-year peak stream discharges using neural networks
-
Muttiah, R.S., R. Srinivasan & P.M. Allen. 1997. Prediction of two-year peak stream discharges using neural networks. J. Am. Water Res. Assoc., 33: 625-630.
-
(1997)
J. Am. Water Res. Assoc
, vol.33
, pp. 625-630
-
-
Muttiah, R.S.1
Srinivasan, R.2
Allen, P.M.3
-
27
-
-
0036698116
-
Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks
-
Ochoa-Rivera, J.C., P. García-Bartual & J. Andreu. 2002. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Hydrol. Earth Syst. Sci., 6(4): 641-654.
-
(2002)
Hydrol. Earth Syst. Sci
, vol.6
, Issue.4
, pp. 641-654
-
-
Ochoa-Rivera, J.C.1
García-Bartual, P.2
Andreu, J.3
-
28
-
-
80053943536
-
Reservoir inflow forecasting using artificial neural network
-
Othman, F. & M. Naseri. 2011. Reservoir inflow forecasting using artificial neural network. Int. J. Phys. Sci., 6(3): 434-440.
-
(2011)
Int. J. Phys. Sci
, vol.6
, Issue.3
, pp. 434-440
-
-
Othman, F.1
Naseri, M.2
-
29
-
-
0347135926
-
Modeling of the daily rainfall-runoff relationship with artificial neural network
-
Rajukar, M.P., U.C. Kothyari & U.C. Chaube. 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol., 285(1-4): 96-113.
-
(2004)
J. Hydrol
, vol.285
, Issue.1-4
, pp. 96-113
-
-
Rajukar, M.P.1
Kothyari, U.C.2
Chaube, U.C.3
-
31
-
-
0000646059
-
Learning internal representation by error propagation
-
In: D.E Rumelhart & J.L. McClelland (eds.), MIT Press, Cambridge
-
Rumelhart, D.E., G.E. Hinton & R.J. Williams. 1986. Learning internal representation by error propagation. In: D.E Rumelhart & J.L. McClelland (eds.). Parallel distributed processing: explorations in the microstructure of cognition, 1. MIT Press, Cambridge, pp. 318-362.
-
(1986)
Parallel Distributed Processing: Explorations In the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
32
-
-
0029663691
-
Fuzzy learning decomposition for the scheduling of hydroelectric power systems
-
Saad, M., P. Bigras, A. Turgeon & R. Duquette. 1996. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res., 32: 179-186.
-
(1996)
Water Resour. Res
, vol.32
, pp. 179-186
-
-
Saad, M.1
Bigras, P.2
Turgeon, A.3
Duquette, R.4
-
33
-
-
0037199712
-
River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
-
Sivakumar, B., A.W. Jayawardena & T.M.K.G. Fernando. 2002. River flow forecasting: use of phase space reconstruction and artificial neural networks approaches. J. Hydrol., 265: 225-245.
-
(2002)
J. Hydrol
, vol.265
, pp. 225-245
-
-
Sivakumar, B.1
Jayawardena, A.W.2
Fernando, T.M.K.G.3
-
34
-
-
37249068512
-
Impact of time-scale of the calibration objective function on the performance of watershed models
-
Sudheer, K.P., I. Chaubey, V. Garg & K.W. Migliaccio. 2007. Impact of time-scale of the calibration objective function on the performance of watershed models. Hydrol. Proc., 21(25): 3409-3419.
-
(2007)
Hydrol. Proc
, vol.21
, Issue.25
, pp. 3409-3419
-
-
Sudheer, K.P.1
Chaubey, I.2
Garg, V.3
Migliaccio, K.W.4
-
35
-
-
0020386641
-
Some comments on evaluation of model performance
-
Willmott, C.J. 1982. Some comments on evaluation of model performance. Bull. Am. Meteorol. Soc., 63(11): 1309-1369.
-
(1982)
Bull. Am. Meteorol. Soc
, vol.63
, Issue.11
, pp. 1309-1369
-
-
Willmott, C.J.1
-
36
-
-
0034253886
-
Flood forecasting with a watershed model: A new method of parameter updating
-
Yang, X. & C. Michel. 2000. Flood forecasting with a watershed model: a new method of parameter updating. Hydrol. Sci. J. Sci. Hydrol., 45(4): 537-546.
-
(2000)
Hydrol. Sci. J. Sci. Hydrol
, vol.45
, Issue.4
, pp. 537-546
-
-
Yang, X.1
Michel, C.2
-
37
-
-
77955735474
-
Daily outflow prediction by multi-layer perceptron with logistic sigmoid and tangent sigmoid activation functions
-
Zadeh, M.R., S. Amin, D. Khalili & V.P. Singh. 2010. Daily outflow prediction by multi-layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour. Manag., 24(11): 2673-2688.
-
(2010)
Water Resour. Manag
, vol.24
, Issue.11
, pp. 2673-2688
-
-
Zadeh, M.R.1
Amin, S.2
Khalili, D.3
Singh, V.P.4
-
38
-
-
0003123930
-
Forecasting with artificial neural networks: The state of the art
-
Zhang, G., B.E. Patuwo & M.Y. Hu. 1998. Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting, 14(1): 35-62.
-
(1998)
Int. J. Forecasting
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.E.2
Hu, M.Y.3
|