메뉴 건너뛰기




Volumn 40, Issue 4, 2012, Pages 872-880

Prediction of water flows in Colorado River, Argentina;Predicción de caudales en río Colorado, Argentina

Author keywords

Argentina; Autoregressive models; Colorado River; Flows; Neural networks; Prediction; Time series

Indexed keywords


EID: 84876262371     PISSN: None     EISSN: 0718560X     Source Type: Journal    
DOI: 10.3856/vol40-issue4-fulltext-5     Document Type: Article
Times cited : (23)

References (38)
  • 1
    • 28344455955 scopus 로고    scopus 로고
    • An artificial neural network model for generating hydrograph from hydro-meteorological parameters
    • Ahmad, S. & S.P. Simonovic. 2005. An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J. Hydrol., 315: 236-251.
    • (2005) J. Hydrol , vol.315 , pp. 236-251
    • Ahmad, S.1    Simonovic, S.P.2
  • 2
    • 77952261780 scopus 로고    scopus 로고
    • A modified conjugate gradient formula for back propagation neural network algorithm
    • Al-Bayati, A., N.A. Sulaiman & G.W. Sadiq. 2009. A modified conjugate gradient formula for back propagation neural network algorithm. J. Comp. Sci., 5(11): 849-856.
    • (2009) J. Comp. Sci , vol.5 , Issue.11 , pp. 849-856
    • Al-Bayati, A.1    Sulaiman, N.A.2    Sadiq, G.W.3
  • 4
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using kfold partitioning of neural network training data
    • Cigizoglu, H.K. & O. Kisi. 2005. Flow prediction by three back propagation techniques using kfold partitioning of neural network training data. Nordic Hydrol., 36(1): 1-16.
    • (2005) Nordic Hydrol , vol.36 , Issue.1 , pp. 1-16
    • Cigizoglu, H.K.1    Kisi, O.2
  • 5
    • 0032829433 scopus 로고    scopus 로고
    • Prevision hydrologique par reseaux de neurons artificiels: État de l'Art
    • Coulibaly, P., F. Anctil & B. Bobee. 1999. Prevision hydrologique par reseaux de neurons artificiels: état de l'art. Can. J. Civil Eng., 26: 293-304.
    • (1999) Can J. Civil Eng , vol.26 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 6
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., F. Anctil & B. Bobee. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol., 230: 244-257.
    • (2000) J. Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 7
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., F. Anctil & B. Bobee. 2001a. Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng., 6(5): 367-376.
    • (2001) J. Hydrol. Eng , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 8
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection
    • Coulibaly, P., B. Bobee & F. Anctil. 2001b. Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrol. Process., 15: 1533-1536.
    • (2001) Hydrol Process , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Bobee, B.2    Anctil, F.3
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko, G. 1989. Approximation by superposition of a sigmoidal function. Math. Control Signal, 2: 303-314.
    • (1989) Math. Control Signal , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Dolling, O.R. & E. Varas. 2002. Artificial neural networks for streamflow prediction. J. Hydraul. Res., 40(5): 547-554.
    • (2002) J. Hydraul. Res , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.2
  • 11
    • 84856625177 scopus 로고    scopus 로고
    • Effect of flow forecasting quality on benefits of reservoir operationa case study for the Geheyan reservoir (China)
    • Dong, X., C.M. Dohmen-Janssen, M. Booij & S. Hulscher. 2006. Effect of flow forecasting quality on benefits of reservoir operationa case study for the Geheyan reservoir (China). Hydrol. Earth Syst. Sci. Discuss., 3: 3771-3814.
    • (2006) Hydrol. Earth Syst. Sci. Discuss , vol.3 , pp. 3771-3814
    • Dong, X.1    Dohmen-Janssen, C.M.2    Booij, M.S.3    Hulscher4
  • 13
    • 0001818563 scopus 로고    scopus 로고
    • Effective and efficient ANN modeling for streamflow forecast-ting. Chapter 1 of artificial neural networks
    • R.S. Govindaraju & A.R. Rao (eds.), Kluwer Academic Publishers, The Netherlands
    • Gupta, H.V., K. Hsu & S. Sorooshian. 2000. Effective and efficient ANN modeling for streamflow forecast-ting. Chapter 1 of artificial neural networks. In: R.S. Govindaraju & A.R. Rao (eds.). Hydrology. Kluwer Academic Publishers, The Netherlands, pp. 7-22.
    • (2000) Hydrology , pp. 7-22
    • Gupta, H.V.1    Hsu, K.2    Sorooshian, S.3
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., M. Stinchcombe & H. White. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0029413797 scopus 로고
    • Artificial neural network modelling of rainfall-runoff process
    • Hsu, K., H.V. Gupta & S. Sorooshian. 1995. Artificial neural network modelling of rainfall-runoff process. Water Resour. Res., 31: 2517-2530.
    • (1995) Water Resour. Res , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 18
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi, O. 2004. River flow modeling using artificial neural networks. J. Hydrol. Eng., ASCE, 9(1): 60-63.
    • (2004) J. Hydrol. Eng., ASCE , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 19
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi, O. & H.K.Cigizoglu. 2007. Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst., 24(3): 211-231.
    • (2007) Civ. Eng. Environ. Syst , vol.24 , Issue.3 , pp. 211-231
    • Kisi, O.1
  • 20
    • 0035426007 scopus 로고    scopus 로고
    • The case for probabilistic forecasting in hydrology
    • Krzysztofowicz, R. 2001. The case for probabilistic forecasting in hydrology. J. Hydrol., 249: 2-9.
    • (2001) J. Hydrol , vol.249 , pp. 2-9
    • Krzysztofowicz, R.1
  • 21
    • 0036846999 scopus 로고    scopus 로고
    • Bayesian system for probabilistic river stage forecasting
    • Krzysztofowicz, R.2002. Bayesian system for probabilistic river stage forecasting. J. Hydrol., 268: 16-40.
    • (2002) J. Hydrol , vol.268 , pp. 16-40
    • Krzysztofowicz, R.1
  • 23
    • 0033209687 scopus 로고    scopus 로고
    • Improving the convergence of the back propagation algorithm using learning rate adaptation methods
    • Magoulas, G.D., M.N. Hrahatis & G.S. Androulakis. 1999. Improving the convergence of the back propagation algorithm using learning rate adaptation methods. Neural Comput., 11: 1769-1796.
    • (1999) Neural Comput , vol.11 , pp. 1769-1796
    • Magoulas, G.D.1    Hrahatis, M.N.2    Androulakis, G.S.3
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H.R. & G.C. Dandy. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw., 15: 101-124.
    • (2000) Environ Modell. Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0031171262 scopus 로고    scopus 로고
    • Prediction of two-year peak stream discharges using neural networks
    • Muttiah, R.S., R. Srinivasan & P.M. Allen. 1997. Prediction of two-year peak stream discharges using neural networks. J. Am. Water Res. Assoc., 33: 625-630.
    • (1997) J. Am. Water Res. Assoc , vol.33 , pp. 625-630
    • Muttiah, R.S.1    Srinivasan, R.2    Allen, P.M.3
  • 27
    • 0036698116 scopus 로고    scopus 로고
    • Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks
    • Ochoa-Rivera, J.C., P. García-Bartual & J. Andreu. 2002. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Hydrol. Earth Syst. Sci., 6(4): 641-654.
    • (2002) Hydrol. Earth Syst. Sci , vol.6 , Issue.4 , pp. 641-654
    • Ochoa-Rivera, J.C.1    García-Bartual, P.2    Andreu, J.3
  • 28
    • 80053943536 scopus 로고    scopus 로고
    • Reservoir inflow forecasting using artificial neural network
    • Othman, F. & M. Naseri. 2011. Reservoir inflow forecasting using artificial neural network. Int. J. Phys. Sci., 6(3): 434-440.
    • (2011) Int. J. Phys. Sci , vol.6 , Issue.3 , pp. 434-440
    • Othman, F.1    Naseri, M.2
  • 29
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajukar, M.P., U.C. Kothyari & U.C. Chaube. 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol., 285(1-4): 96-113.
    • (2004) J. Hydrol , vol.285 , Issue.1-4 , pp. 96-113
    • Rajukar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 32
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad, M., P. Bigras, A. Turgeon & R. Duquette. 1996. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res., 32: 179-186.
    • (1996) Water Resour. Res , vol.32 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 33
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
    • Sivakumar, B., A.W. Jayawardena & T.M.K.G. Fernando. 2002. River flow forecasting: use of phase space reconstruction and artificial neural networks approaches. J. Hydrol., 265: 225-245.
    • (2002) J. Hydrol , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 34
    • 37249068512 scopus 로고    scopus 로고
    • Impact of time-scale of the calibration objective function on the performance of watershed models
    • Sudheer, K.P., I. Chaubey, V. Garg & K.W. Migliaccio. 2007. Impact of time-scale of the calibration objective function on the performance of watershed models. Hydrol. Proc., 21(25): 3409-3419.
    • (2007) Hydrol. Proc , vol.21 , Issue.25 , pp. 3409-3419
    • Sudheer, K.P.1    Chaubey, I.2    Garg, V.3    Migliaccio, K.W.4
  • 35
    • 0020386641 scopus 로고
    • Some comments on evaluation of model performance
    • Willmott, C.J. 1982. Some comments on evaluation of model performance. Bull. Am. Meteorol. Soc., 63(11): 1309-1369.
    • (1982) Bull. Am. Meteorol. Soc , vol.63 , Issue.11 , pp. 1309-1369
    • Willmott, C.J.1
  • 36
    • 0034253886 scopus 로고    scopus 로고
    • Flood forecasting with a watershed model: A new method of parameter updating
    • Yang, X. & C. Michel. 2000. Flood forecasting with a watershed model: a new method of parameter updating. Hydrol. Sci. J. Sci. Hydrol., 45(4): 537-546.
    • (2000) Hydrol. Sci. J. Sci. Hydrol , vol.45 , Issue.4 , pp. 537-546
    • Yang, X.1    Michel, C.2
  • 37
    • 77955735474 scopus 로고    scopus 로고
    • Daily outflow prediction by multi-layer perceptron with logistic sigmoid and tangent sigmoid activation functions
    • Zadeh, M.R., S. Amin, D. Khalili & V.P. Singh. 2010. Daily outflow prediction by multi-layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour. Manag., 24(11): 2673-2688.
    • (2010) Water Resour. Manag , vol.24 , Issue.11 , pp. 2673-2688
    • Zadeh, M.R.1    Amin, S.2    Khalili, D.3    Singh, V.P.4
  • 38
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang, G., B.E. Patuwo & M.Y. Hu. 1998. Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting, 14(1): 35-62.
    • (1998) Int. J. Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.