메뉴 건너뛰기




Volumn , Issue , 2008, Pages 115-148

Artificial neural networks in water resources

Author keywords

Artificial neural networks; Feed forward back propagation; Generalized regression neural network; Radial basis functions

Indexed keywords


EID: 36549042012     PISSN: 18714668     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4020-6575-0_8     Document Type: Conference Paper
Times cited : (12)

References (58)
  • 1
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: Part I -A Discussion of principles
    • J. E. Nash and J. V. Sutcliffe, River flow forecasting through conceptual models: Part I -A Discussion of principles, Journal of Hydrology, 10, 282-290 (1970).
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 2
    • 0019220433 scopus 로고
    • Stochastic time series modelling of arid zone streamflows
    • R. Srikanthan and T. A. McMahon, Stochastic time series modelling of arid zone streamflows, Hydrological Sciences Bulletin, 25, 423-434 (1980a).
    • (1980) Hydrological Sciences Bulletin , vol.25 , pp. 423-434
    • Srikanthan, R.1    McMahon, T.A.2
  • 3
    • 0019170131 scopus 로고
    • Stochastic generation of monthly flows for ephemeral streams
    • R. Srikanthan and T. A. McMahon, Stochastic generation of monthly flows for ephemeral streams, Journal of Hydrology, 47, 19-40 (1980b).
    • (1980) Journal of Hydrology , vol.47 , pp. 19-40
    • Srikanthan, R.1    McMahon, T.A.2
  • 6
    • 0029413162 scopus 로고
    • A generalized spatial-temporal model of rainfall based on a Clustered point process
    • P. S. P. Cowpertwait, A generalized spatial-temporal model of rainfall based on a Clustered point process, Proceedings of the Royal Society of London, A 450, 163-175 (1995).
    • (1995) Proceedings of the Royal Society of London, A , vol.450 , pp. 163-175
    • Cowpertwait, P.S.P.1
  • 7
    • 0001203993 scopus 로고    scopus 로고
    • P. S. P. Cowpertwait, A Poisson-cluster model of rainfall: high order moments and extreme values, Proceedings of Royal Society of London, A 454, 885-898 (1998).
    • P. S. P. Cowpertwait, A Poisson-cluster model of rainfall: high order moments and extreme values, Proceedings of Royal Society of London, A 454, 885-898 (1998).
  • 8
    • 0036566047 scopus 로고    scopus 로고
    • Bivariate stochastic modeling of ephemeral streamflow
    • H. K. Cigizoglu, A. Metcalfe, and P. T. Adamson, Bivariate stochastic modeling of ephemeral streamflow, Hydrologic Processes, 16(7), 1451-1465 (2002).
    • (2002) Hydrologic Processes , vol.16 , Issue.7 , pp. 1451-1465
    • Cigizoglu, H.K.1    Metcalfe, A.2    Adamson, P.T.3
  • 9
    • 23044443211 scopus 로고    scopus 로고
    • Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation
    • H. K. Cigizoglu, Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation, Journal of Hydrologie Engineering, ASCE, 10(4), 336-341 (2005).
    • (2005) Journal of Hydrologie Engineering, ASCE , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 11
    • 0024258394 scopus 로고
    • Stochastic Models of Sediment Yield
    • Chapter 9, edited by M. G. Anderson Wiley, New York
    • V. P. Singh, P. F. Krstanovic, and L. J. Lane, Stochastic Models of Sediment Yield, Modeling Geomorphological Systems, Chapter 9, edited by M. G. Anderson (Wiley, New York, 1988).
    • (1988) Modeling Geomorphological Systems
    • Singh, V.P.1    Krstanovic, P.F.2    Lane, L.J.3
  • 12
    • 0029663621 scopus 로고    scopus 로고
    • The use of neural networks for the prediction of water quality parameters
    • H. R. Maier and G. C. Dandy, The use of neural networks for the prediction of water quality parameters, Water Resources Research, 32(4), 1013-1022 (1996).
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 13
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • K. Hsu, H. V. Gupta, and S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process, Water Resources Research, 31,2517-2530 (1995).
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 14
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • A. Y. Shamseldin, Application of a neural network technique to rainfall-runoff modeling, Journal of Hydrology, 199, 272-294 (1997).
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 15
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • N. Sajikumar and B. S. Thandaveswara, A non-linear rainfall-runoff model using an artificial neural network, Journal of Hydrology, 216, 32-55 (1999).
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 16
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • A. S. Tokar and P. A. Johnson, Rainfall-runoff modeling using artificial neural networks, Journal of Hydrologie Engineering, 4(3), 232-239 (1999).
    • (1999) Journal of Hydrologie Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 17
    • 9444245344 scopus 로고    scopus 로고
    • Rainfall-Runoff Modelling Using Three Neural Network Methods. Artificial Intelligence and Soft Computing - ICAISC 2004
    • H. K Cigizoglu and M. Alp, Rainfall-Runoff Modelling Using Three Neural Network Methods. Artificial Intelligence and Soft Computing - ICAISC 2004, Lecture Notes in Artificial Intelligience, 3070,166-171 (2004).
    • (2004) Lecture Notes in Artificial Intelligience , vol.3070 , pp. 166-171
    • Cigizoglu, H.K.1    Alp, M.2
  • 18
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • F. Anctil, C. Perrin, and V. Andreassian, Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models, Environ. Modell. Software. 19, 357-368 (2004).
    • (2004) Environ. Modell. Software , vol.19 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andreassian, V.3
  • 19
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • K. Thirumalaiah, and M. C. Deo, River stage forecasting using artificial neural networks, Journal of Hydrologie Engineering, 3(1), 26-32 (1998).
    • (1998) Journal of Hydrologie Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 20
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • C. M. Zealand, D. H. Burn, and S. P. Simonovic, Short term streamflow forecasting using artificial neural networks, Journal of Hydrology, 214, 32-48 (1999).
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 21
    • 0032961025 scopus 로고    scopus 로고
    • River flood forecasting with a neural network Model
    • M. Campolo, P. Andreussi, and A. Soldati, River flood forecasting with a neural network Model, Water Resources Research, 35(4), 1191-1197(1999).
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 22
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • edited by R. S. Govindaraju and A. R. Rao Kluwer Academic Publishers, London
    • J. D. Salas, M. Markus, and A. S. Tokar, Streamflow forecasting based on artificial neural networks, in: Artificial Neural Networks in Hydrology, edited by R. S. Govindaraju and A. R. Rao (Kluwer Academic Publishers, London, 2000).
    • (2000) Artificial Neural Networks in Hydrology
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 23
    • 0023345391 scopus 로고
    • Application of discrete autoregressive moving average models for estimation of daily runoff
    • T. J. Chang, J. W. Delleur, and M. L. Kavvas, Application of discrete autoregressive moving average models for estimation of daily runoff, Journal of Hydrology, 91, 119-135 (1987).
    • (1987) Journal of Hydrology , vol.91 , pp. 119-135
    • Chang, T.J.1    Delleur, J.W.2    Kavvas, M.L.3
  • 24
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
    • B. Sivakumar, A. W. Jayawardena, and T. M. K. G. Fernando, River flow forecasting: use of phase space reconstruction and artificial neural networks approaches, Journal of Hydrology, 265, 225-245 (2002).
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 25
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • H. K. Cigizoglu, Estimation, forecasting and extrapolation of flow data by artificial neural networks, Hydrological Sciences Journal, 48(3), 349-361 (2003a).
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 26
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • H. K. Cigizoglu, Incorporation of ARMA models into flow forecasting by artificial neural networks, Environmetrics, 14(4), 417-427 (2003b).
    • (2003) Environmetrics , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 27
    • 23044443211 scopus 로고    scopus 로고
    • Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation
    • H. K Cigizoglu, Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation, ASCE Journal of Hydrologic Engineering, 10(4), 336-341 (2005).
    • (2005) ASCE Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 28
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • O. Kisi, River flow modeling using artificial neural networks, ASCE Journal of Hydrologic Engineering, 9(1), 60-63 (2004).
    • (2004) ASCE Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 29
    • 36549025692 scopus 로고    scopus 로고
    • P. Coulibaly, F. Anctil, and B. Bobe'e, Real time neural network based forecasting system for hydropower reservoirs, in: Proceedings of the First International Conference on New Information Technologies for Decision Making in Civil Engineering, edited by E. T. Miresco, University of Quebec, Montreal, Canada (10-13 October 1998), pp. 1001-1011.
    • P. Coulibaly, F. Anctil, and B. Bobe'e, Real time neural network based forecasting system for hydropower reservoirs, in: Proceedings of the First International Conference on New Information Technologies for Decision Making in Civil Engineering, edited by E. T. Miresco, University of Quebec, Montreal, Canada (10-13 October 1998), pp. 1001-1011.
  • 31
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • S. K. Jain, Development of integrated sediment rating curves using ANNs, Journal of Hydraulic Engineering, ASCE, 127(1), 30-37 (2001).
    • (2001) Journal of Hydraulic Engineering, ASCE , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 32
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • H. K. Cigizoglu, Estimation and forecasting of daily suspended sediment data by multi layer perceptrons, Advances in Water Resources, 27, 185-195 (2004).
    • (2004) Advances in Water Resources , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 33
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment estimation by feed forward back propagation method using hydro meteorological data
    • M. Alp, and H. K. Cigizoglu, Suspended sediment estimation by feed forward back propagation method using hydro meteorological data, Environmental Modelling and Software, 22(1), 2-13 (2007).
    • (2007) Environmental Modelling and Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 34
    • 0035117652 scopus 로고    scopus 로고
    • Modeling Sediment Transfer in Malawi: Comparing Backpropagation Neural Network Solutions against a multiple linear regression benchmark using small data sets
    • R. J. Abrahart and S. M White, Modeling Sediment Transfer in Malawi: Comparing Backpropagation Neural Network Solutions against a multiple linear regression benchmark using small data sets, Physics and Chemistry of the Earth, B 26(1), 19-24 (2001).
    • (2001) Physics and Chemistry of the Earth, B , vol.26 , Issue.1 , pp. 19-24
    • Abrahart, R.J.1    White, S.M.2
  • 37
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward backpropagation method
    • M. Freiwan and H. K. Cigizoglu, Prediction of total monthly rainfall in Jordan using feed forward backpropagation method, Fresenius Environmental Bulletin, 14(2), 142-151 (2005).
    • (2005) Fresenius Environmental Bulletin , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 38
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • H. K. Cigizoglu and O. Kisi, Methods to improve the neural network performance in suspended sediment estimation, Journal of Hydrology, 317(3-4), 221-238 (2006).
    • (2006) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 39
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • A. Jain and S. K. V. P. Indurthy, Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, Journal of Hydrologie Engineering, ASCE, 8(2), 93-98 (2003).
    • (2003) Journal of Hydrologie Engineering, ASCE , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 40
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • O. Kisi, River flow modeling using artificial neural networks, ASCE Journal of Hydrologic Engineering, 9(1), 60-63 (2004).
    • (2004) ASCE Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 41
    • 12544253180 scopus 로고    scopus 로고
    • Flow Prediction by three Back Propagation Techniques Using k-fold Partitioning of Neural Network Training Data
    • H. K. Cigizoglu and O. Kisi, Flow Prediction by three Back Propagation Techniques Using k-fold Partitioning of Neural Network Training Data, Nordic Hydrology, 36(1 ), 1-16 (2005).
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 1-16
    • Cigizoglu, H.K.1    Kisi, O.2
  • 42
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • D. A. K. Fernando and A. W. Jayawardena, Runoff forecasting using RBF networks with OLS algorithm, Journal ofHydrologicEngineering, 3(3), 203-209 (1998).
    • (1998) Journal ofHydrologicEngineering , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.K.1    Jayawardena, A.W.2
  • 43
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • K. P. Sudheer and S. K. Jain, Radial basis function neural network for modeling rating curves, Journal of Hydrologic Engineering, ASCE, 8(3), 161-164 (2003).
    • (2003) Journal of Hydrologic Engineering, ASCE , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 44
    • 0004063090 scopus 로고
    • Macmillan College Publishing, New York
    • S. Haykin, Neural networks (Macmillan College Publishing, New York, 1994).
    • (1994) Neural networks
    • Haykin, S.1
  • 45
    • 0028543366 scopus 로고
    • Training feed forward techniques with the Marquardt algorithm
    • M. T. Hagan and M. B. Menhaj, Training feed forward techniques with the Marquardt algorithm, IEEE Transactions on NeuralNetworks, 5(6), 989-993 (1994).
    • (1994) IEEE Transactions on NeuralNetworks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 46
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modeling for K-P interactions
    • M. Y. El-Bakyr, Feed forward neural networks modeling for K-P interactions, Chaos, Solutions and Fractals, 18(3), 995-1000 (2003).
    • (2003) Chaos, Solutions and Fractals , vol.18 , Issue.3 , pp. 995-1000
    • El-Bakyr, M.Y.1
  • 47
    • 0033100606 scopus 로고    scopus 로고
    • A method to determine the required number of neural network training repetitions
    • M. S. Iyer and R. R. Rhinehart, A method to determine the required number of neural network training repetitions, IEEE Transactions on Neural Networks, 10(2), 427-432 (1999).
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.2 , pp. 427-432
    • Iyer, M.S.1    Rhinehart, R.R.2
  • 48
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Systems, 2, 321-355 (1988).
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 49
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • T. Poggio and F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks, Science, 2247, 978-982 (1990).
    • (1990) Science , vol.2247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 50
    • 0038110938 scopus 로고    scopus 로고
    • Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods
    • A. M. Taurino, C Distante, P. Siciliano, and L. Vasanelli, Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods, Sensors and Actuators, 93, 117-125 (2003).
    • (2003) Sensors and Actuators , vol.93 , pp. 117-125
    • Taurino, A.M.1    Distante, C.2    Siciliano, P.3    Vasanelli, L.4
  • 51
  • 53
    • 0038113313 scopus 로고    scopus 로고
    • Modelling of plasma etching using a generalized regression neural network
    • B. Kim, S. Kim, and K. Kim, Modelling of plasma etching using a generalized regression neural network, Vacuum, 71, 497-503 (2003).
    • (2003) Vacuum , vol.71 , pp. 497-503
    • Kim, B.1    Kim, S.2    Kim, K.3
  • 54
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • K. P. Sudheer, A. K. Gosain, and K. S. Ramasastri, A data-driven algorithm for constructing artificial neural network rainfall-runoff models, HydrologicalProcesses, 16, 1325-1330 (2002).
    • (2002) HydrologicalProcesses , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 55
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • B. Zhang and R. S. Govindaraju, Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resources Research, 36(3), 753-763 (2000a).
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-763
    • Zhang, B.1    Govindaraju, R.S.2
  • 56
    • 0002222546 scopus 로고    scopus 로고
    • Modular neural networks for watershed runoff
    • edited by R. S. Govindaraju and A. R. Rao Kluwer Academic Publishers, Amsterdam
    • B. Zhang, and R. S. Govindaraju, Modular neural networks for watershed runoff, in: Artificial Neural Networks in Hydrology, edited by R. S. Govindaraju and A. R. Rao (Kluwer Academic Publishers, Amsterdam, 2000b).
    • (2000) Artificial Neural Networks in Hydrology
    • Zhang, B.1    Govindaraju, R.S.2
  • 57
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • T. S. Hu, K. C. Lam, and S. T. NG, River flow time series prediction with a range-dependent neural network, Hydrological Sciences Journal, 46(5), 729-745 (2001).
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    NG, S.T.3
  • 58
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • L. See and S. Openshaw, Applying soft computing approaches to river level forecasting, Hydrological Sciences Journal, 44(5), 763-778 (1999).
    • (1999) Hydrological Sciences Journal , vol.44 , Issue.5 , pp. 763-778
    • See, L.1    Openshaw, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.