-
1
-
-
0000646059
-
Learning Internal Representations by Error Propagation
-
Rumelhart, D.E. and J.L. McClelland (Eds.). MIT Press, ISBN: 0-262-68053-X
-
Rumelhart, D.E., G.E. Hinton and R.J. Williams, 1986. Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing, Rumelhart, D.E. and J.L. McClelland (Eds.). MIT Press, ISBN: 0-262-68053-X, pp: 318-362.
-
(1986)
Parallel Distributed Processing
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
2
-
-
0026745182
-
On the problem of local minima in back-propagation
-
Gori, M. and A. Tesi, 1992. On the problem of local minima in back-propagation. IEEE Trans. Patt. Anal. Mach. Intel., 14: 76-86. http://doi.ieeecomputersociety.org/10.1109/34.107014
-
(1992)
IEEE Trans. Patt. Anal. Mach. Intel.
, vol.14
, pp. 76-86
-
-
Gori, M.1
Tesi, A.2
-
4
-
-
0000387235
-
A rapidly convergent descent method for minimization
-
Fletcher, R. and M.J.D. Powell, 1963. A rapidly convergent descent method for minimization. Comput. J., 6: 163-168. http://comjnl.oxfordjournals.org/cgi/content/abstract/6/2/163
-
(1963)
Comput. J.
, vol.6
, pp. 163-168
-
-
Fletcher, R.1
Powell, M.J.D.2
-
5
-
-
0000615669
-
Function minimization by conjugate gradients
-
DOI: 10.1093/comjnl/7.2.149
-
Fletcher, R. and C.M. Reeves, 1964. Function minimization by conjugate gradients. Comput. J., 7: 149-160. DOI: 10.1093/comjnl/7.2.149
-
(1964)
Comput. J.
, vol.7
, pp. 149-160
-
-
Fletcher, R.1
Reeves, C.M.2
-
6
-
-
0000135303
-
Methods of conjugate gradients for solving linear systems
-
Hestenes, M.R. and E. Stiefel, 1952. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bureau Stand., 49: 409-435. http://nvl.nist.gov/pub/nistpubs/jres/049/6/V49.N06.A08.pdf
-
(1952)
J. Res. Natl. Bureau Stand.
, vol.49
, pp. 409-435
-
-
Hestenes, M.R.1
Stiefel, E.2
-
7
-
-
0014794877
-
A unified approach to quadratically convergent algorithms for function minimization
-
DOI: 10.1007/BF00927440
-
Huang, H.Y., 1970. A unified approach to quadratically convergent algorithms for function minimization. J. Optim. Theor. Appli., 5: 405-423. DOI: 10.1007/BF00927440
-
(1970)
J. Optim. Theor. Appli.
, vol.5
, pp. 405-423
-
-
Huang, H.Y.1
-
8
-
-
0030584163
-
The Interchangeability of learning rate and gain in back propagation neural networks
-
DOI: 10.1162/neco.1996.8.2.451
-
Thimm, G., P. Moerland and E. Fiesler, 1996. The Interchangeability of learning rate and gain in back propagation neural networks. Neural Comput., 8: 451-460. DOI: 10.1162/neco.1996.8.2.451
-
(1996)
Neural Comput
, vol.8
, pp. 451-460
-
-
Thimm, G.1
Moerland, P.2
Fiesler, E.3
-
9
-
-
0032051569
-
The effect of internal parameters and geometry on the performance of back-propagation neural networks
-
DOI: 10.1016/S1364-8152(98)00020-6
-
Maier, H.R. and G.C. Dandy, 1998. The effect of internal parameters and geometry on the performance of back-propagation neural networks. Environ. Model. Software, 13: 193-209. DOI: 10.1016/S1364-8152(98)00020-6
-
(1998)
Environ. Model. Software
, vol.13
, pp. 193-209
-
-
Maier, H.R.1
Dandy, G.C.2
-
10
-
-
0037239622
-
Performance Improvement of Back propagation algorithm by automatic activation function gain tuning using fuzzy logic
-
DOI: 10.1016/S0925-2312(02)00576-3
-
Eom, K., K. Jung and H. Sirisena, 2003. Performance Improvement of Back propagation algorithm by automatic activation function gain tuning using fuzzy logic. Neurocomputing, 50: 439-460. DOI: 10.1016/S0925-2312(02)00576-3
-
(2003)
Neurocomputing
, vol.50
, pp. 439-460
-
-
Eom, K.1
Jung, K.2
Sirisena, H.3
-
12
-
-
85026821323
-
An improved learning algorithm based on conjugate gradient methods for back propagation neural network
-
Nawi, N.M., M.R. Ransing and R.S. Ransing, 2006. An improved learning algorithm based on conjugate gradient methods for back propagation neural network. Proc. Word Acad. Sci. Eng. Technol., 4: 46-54. http://www.waset.org/ijci/v4/v4-1-6.pdf
-
(2006)
Proc. Word Acad. Sci. Eng. Technol.
, vol.4
, pp. 46-54
-
-
Nawi, N.M.1
Ransing, M.R.2
Ransing, R.S.3
-
13
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Eugen., 7: 179-188. http://www.mendeley.com/c/85931226/Fisher-1936-The-use-of-multiple-measurements-intaxonomic-problems/
-
(1936)
Ann. Eugen.
, vol.7
, pp. 179-188
-
-
Fisher, R.A.1
-
14
-
-
77952277938
-
A new non-quadratic model for unconstrained nonlinear optimization
-
Al Bayati, A., 1993. A new non-quadratic model for unconstrained nonlinear optimization. Mutah. J. Res. Stud., 8: 131-155.
-
(1993)
Mutah. J. Res. Stud.
, vol.8
, pp. 131-155
-
-
Al Bayati, A.1
-
15
-
-
0021457932
-
A variablemetric method using a nonquadratic model
-
DOI: 10.1007/BF00934462
-
Tassopoulus, A. and C. Story, 1984. A variablemetric method using a nonquadratic model. J. Optim. Theor. Appli., 43: 383-393. DOI: 10.1007/BF00934462
-
(1984)
J. Optim. Theor. Appli.
, vol.43
, pp. 383-393
-
-
Tassopoulus, A.1
Story, C.2
-
16
-
-
0018431929
-
A conjugate gradient optimization method invariant to non-linear scaling
-
Boland, W.R., E.R. Kamgnia and J.S. Kowallik, 1979. A conjugate gradient optimization method invariant to non-linear scaling. J. Optim. Theor. Appli., 27: 221-230. http://www.springerlink.com/index/T514NN45788701V4.pdf
-
(1979)
J. Optim. Theor. Appli.
, vol.27
, pp. 221-230
-
-
Boland, W.R.1
Kamgnia, E.R.2
Kowallik, J.S.3
|