-
2
-
-
84956628443
-
Predicting time series with support vector machines
-
London, UK: Springer-Verlag
-
MÄuller K R, Smola A, RÄatsch G, SchÄolkopf B, Kohlmorgen J, Vapnik V. Predicting time series with support vector machines. In: Proceedings of the 7th International Conference on Artificial Neural Networks-ICANN097. London, UK: Springer-Verlag, 1997. 999-1004.
-
(1997)
Proceedings of the 7th International Conference on Artificial Neural Networks-ICANN097
, pp. 999-1004
-
-
Mäuller, K.R.1
Smola, A.2
Räatsch, G.3
Schäolkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
3
-
-
67349170327
-
Localized support vector regression for time series prediction
-
Yang H Q, Huang K Z, King I, Lyu M R. Localized support vector regression for time series prediction. Neurocomputing, 2009, 72(10-12): 2659-2669.
-
(2009)
Neurocomputing
, vol.72
, Issue.10
, pp. 2659-2669
-
-
Yang, H.Q.1
Huang, K.Z.2
King, I.3
Lyu, M.R.4
-
4
-
-
25144486629
-
Analysis of support vector regression for approximation of complex engineering analyses
-
Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, 2005, 127(6): 1077-1088.
-
(2005)
Journal of Mechanical Design
, vol.127
, Issue.6
, pp. 1077-1088
-
-
Clarke, S.M.1
Griebsch, J.H.2
Simpson, T.W.3
-
5
-
-
17844365596
-
Artificial neural network and support vector machine approach for locating faults in radial distribution systems
-
Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721.
-
(2005)
IEEE Transactions on Power Delivery
, vol.20
, Issue.2
, pp. 710-721
-
-
Thukaram, D.1
Khincha, H.P.2
Vijaynarasimha, H.P.3
-
6
-
-
0032595046
-
Model complexity control for regression using VC generalization bounds
-
Cherkassky V, Shao X H, Mulier F M, Vapnik V N. Model complexity control for regression using VC generalization bounds. IEEE Transactions on Neural Networks, 1999, 10(5): 1075-1089.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1075-1089
-
-
Cherkassky, V.1
Shao, X.H.2
Mulier, F.M.3
Vapnik, V.N.4
-
7
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Computation, 2000, 12(9): 2013-2036.
-
(2000)
Neural Computation
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
8
-
-
0036643075
-
Model selection for small sample regression
-
Chapelle O, Vapnik V, Bengio Y. Model selection for small sample regression. Machine Learning, 2002, 48(1-3): 9-23.
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 9-23
-
-
Chapelle, O.1
Vapnik, V.2
Bengio, Y.3
-
9
-
-
50249155939
-
Shrinking the tube: a new support vector regression algorithm
-
Cambridge: MIT Press
-
SchÄolkopf B, Bartlett P L, Smola A J, Williamson R C. Shrinking the tube: a new support vector regression algorithm. In: Proceedings of the 1998 Advances in Neural Information Processing Systems, 11. Cambridge: MIT Press, 1998.
-
(1998)
Proceedings of the 1998 Advances in Neural Information Processing Systems, 11
-
-
Schäolkopf, B.1
Bartlett, P.L.2
Smola, A.J.3
Williamson, R.C.4
-
10
-
-
17444438778
-
New support vector algorithms
-
SchÄolkopf B, Smola A J, Williamson R C, Bartlett P L. New support vector algorithms. Neural Computation, 2000, 12(5): 1207-1245.
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schäolkopf, B.1
Smola, A.J.2
Williamson, R.C.3
Bartlett, P.L.4
-
11
-
-
0037844881
-
Linear dependency between " and the input noise in "-support vector regression
-
Kwok J T, Tsang I W. Linear dependency between " and the input noise in "-support vector regression. IEEE Transactions on Neural Networks, 2003,14(3): 544-553.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.3
, pp. 544-553
-
-
Kwok, J.T.1
Tsang, I.W.2
-
12
-
-
17444398555
-
Leave-one-out bounds for support vector regression model selection
-
Chang M W, Lin C J. Leave-one-out bounds for support vector regression model selection. Neural Computation, 2005, 17(5): 1188-1222.
-
(2005)
Neural Computation
, vol.17
, Issue.5
, pp. 1188-1222
-
-
Chang, M.W.1
Lin, C.J.2
-
13
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1-3): 131-159.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
14
-
-
20444505293
-
Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
-
ÄUstÄun B, Melssen W J, Oudenhuijzen M, Buydens L M C. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 2005, 544(1-2): 292-305.
-
(2005)
Analytica Chimica Acta
, vol.544
, Issue.1-2
, pp. 292-305
-
-
Äustäun, B.1
Melssen, W.J.2
Oudenhuijzen, M.3
Buydens, L.M.C.4
-
15
-
-
33745056237
-
A hybrid support vector machine regression for exchange rate prediction
-
Pai P F, Lin C S, Hong W C, Chen C T. A hybrid support vector machine regression for exchange rate prediction. Information and Management Sciences, 2006, 17(2): 19-32.
-
(2006)
Information and Management Sciences
, vol.17
, Issue.2
, pp. 19-32
-
-
Pai, P.F.1
Lin, C.S.2
Hong, W.C.3
Chen, C.T.4
-
16
-
-
70449726803
-
A new fuzzy identification approach using support vector regression and particle swarm optimization algorithm
-
Sanya, China: IEEE
-
TianWJ, Tian Y. A new fuzzy identification approach using support vector regression and particle swarm optimization algorithm. In: Proceedings of the 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, Sanya, China: IEEE, 2009. 86-90.
-
(2009)
Proceedings of the 2009 ISECS International Colloquium on Computing, Communication, Control, and Management
, pp. 86-90
-
-
Tian, W.J.1
Tian, Y.2
-
17
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 2004, 17(1): 113-126.
-
(2004)
Neural Networks
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.Q.2
-
19
-
-
77954762258
-
Framelet kernels with applications to support vector regression and regularization networks
-
Zhang W F, Dai D Q, Yan H. Framelet kernels with applications to support vector regression and regularization networks. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2010, 40(4): 1128-1144.
-
(2010)
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics
, vol.40
, Issue.4
, pp. 1128-1144
-
-
Zhang, W.F.1
Dai, D.Q.2
Yan, H.3
-
20
-
-
77955660099
-
Relevance regression learning with support vector machines
-
Apolloni B, Malchiodi D, Valerio L. Relevance regression learning with support vector machines. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73(9): 2855-2867.
-
(2010)
Nonlinear Analysis: Theory, Methods & Applications
, vol.73
, Issue.9
, pp. 2855-2867
-
-
Apolloni, B.1
Malchiodi, D.2
Valerio, L.3
-
21
-
-
70649100043
-
New support vector algorithms with parametric insensitive/margin model
-
Hao P Y. New support vector algorithms with parametric insensitive/margin model. Neural Networks, 2010, 23(1): 60-73.
-
(2010)
Neural Networks
, vol.23
, Issue.1
, pp. 60-73
-
-
Hao, P.Y.1
-
23
-
-
0042552138
-
A computational method for the indefinite quadratic programming problem
-
Bunch J R, Kaufman L. A computational method for the indefinite quadratic programming problem. Linear Algebra and Its Applications, 1980, 34: 341-370.
-
(1980)
Linear Algebra and Its Applications
, vol.34
, pp. 341-370
-
-
Bunch, J.R.1
Kaufman, L.2
-
24
-
-
67650113615
-
Candidate working set strategy based SMO algorithm in support vector machine
-
Song X F, Chen W M, Chen Y J P P, Jiang B. Candidate working set strategy based SMO algorithm in support vector machine. Information Processing and Management, 2009, 45(5): 584-592.
-
(2009)
Information Processing and Management
, vol.45
, Issue.5
, pp. 584-592
-
-
Song, X.F.1
Chen, W.M.2
Chen, Y.J.P.P.3
Jiang, B.4
-
25
-
-
77951886195
-
Support vector machine based on nodes refined decision directed acyclic graph and its application to fault diagnosis
-
Yi Hui, Song Xiao-Feng, Jiang Bin, Wang Ding-Cheng. Support vector machine based on nodes refined decision directed acyclic graph and its application to fault diagnosis. Acta Automatica Sinica, 2010, 36(3): 427-432.
-
(2010)
Acta Automatica Sinica
, vol.36
, Issue.3
, pp. 427-432
-
-
Yi, H.1
Song, X.-F.2
Jiang, B.3
Wang, D.-C.4
-
26
-
-
62449289773
-
Sample reducing method in SVM based on K-closed sub-clusters
-
Song X F, Chen W M, Jiang B. Sample reducing method in SVM based on K-closed sub-clusters. International Journal of Innovative Computing Information and Control, 2008, 4(7): 1751-1760.
-
(2008)
International Journal of Innovative Computing Information and Control
, vol.4
, Issue.7
, pp. 1751-1760
-
-
Song, X.F.1
Chen, W.M.2
Jiang, B.3
-
27
-
-
79958136331
-
Batch process monitoring based on support vector data description method
-
Ge Z Q, Gao F R, Song Z H. Batch process monitoring based on support vector data description method. Journal of Process Control, 2011, 21(6): 949-959.
-
(2011)
Journal of Process Control
, vol.21
, Issue.6
, pp. 949-959
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
28
-
-
67650530069
-
Fault diagnosis techniques for dynamic systems
-
Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748-754.
-
(2009)
Acta Automatica Sinica
, vol.35
, Issue.6
, pp. 748-754
-
-
Zhou, D.-H.1
Hu, Y.-Y.2
-
30
-
-
33748991477
-
Fault accommodation for nonlinear dynamic systems
-
Jiang B, Staroswiecki M, Cocquempot V. Fault accommodation for nonlinear dynamic systems. IEEE Transactions on Automatic Control, 2006, 51(9): 1578-1583.
-
(2006)
IEEE Transactions on Automatic Control
, vol.51
, Issue.9
, pp. 1578-1583
-
-
Jiang, B.1
Staroswiecki, M.2
Cocquempot, V.3
-
31
-
-
0031272439
-
A neural-network approach to fault detection and diagnosis in industrial processes
-
Maki Y, Loparo K A. A neural-network approach to fault detection and diagnosis in industrial processes. IEEE Transactions on Control Systems Technology, 1997, 5(6): 529-541.
-
(1997)
IEEE Transactions on Control Systems Technology
, vol.5
, Issue.6
, pp. 529-541
-
-
Maki, Y.1
Loparo, K.A.2
-
32
-
-
76549132623
-
Complex process quality prediction using modified kernel partial least squares
-
Zhang Y W, Teng Y D, Zhang Y. Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science, 2010, 65(6): 2153-2158.
-
(2010)
Chemical Engineering Science
, vol.65
, Issue.6
, pp. 2153-2158
-
-
Zhang, Y.W.1
Teng, Y.D.2
Zhang, Y.3
-
33
-
-
84862875662
-
Modeling and monitoring of dynamic processes
-
Zhang Y W, Chai T Y, Li Z M, Yang C Y. Modeling and monitoring of dynamic processes. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2): 277-284.
-
(2012)
IEEE Transactions on Neural Networks and Learning Systems
, vol.23
, Issue.2
, pp. 277-284
-
-
Zhang, Y.W.1
Chai, T.Y.2
Li, Z.M.3
Yang, C.Y.4
-
34
-
-
76849100172
-
Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
-
Zhang Y W, Zhou H, Qin S J, Chai T Y. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Transactions on Industrial Informatics, 2010, 6(1): 3-10.
-
(2010)
IEEE Transactions on Industrial Informatics
, vol.6
, Issue.1
, pp. 3-10
-
-
Zhang, Y.W.1
Zhou, H.2
Qin, S.J.3
Chai, T.Y.4
|