메뉴 건너뛰기




Volumn 39, Issue 3, 2013, Pages 272-284

Flexible support vector regression and its application to fault detection

Author keywords

Fault detection; Flexible; Power supply; Support vector regression (SVR)

Indexed keywords

COMPLEX SYSTEM MODELING; FLEXIBLE; FLEXIBLE SUPPORTS; GENERALIZATION ABILITY; HIGH FREQUENCY POWER SUPPLY; LEARNING ABILITIES; POWER SUPPLY; SUPPORT VECTOR REGRESSION (SVR);

EID: 84876054068     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1004.2013.00272     Document Type: Article
Times cited : (14)

References (34)
  • 3
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang H Q, Huang K Z, King I, Lyu M R. Localized support vector regression for time series prediction. Neurocomputing, 2009, 72(10-12): 2659-2669.
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2659-2669
    • Yang, H.Q.1    Huang, K.Z.2    King, I.3    Lyu, M.R.4
  • 4
    • 25144486629 scopus 로고    scopus 로고
    • Analysis of support vector regression for approximation of complex engineering analyses
    • Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, 2005, 127(6): 1077-1088.
    • (2005) Journal of Mechanical Design , vol.127 , Issue.6 , pp. 1077-1088
    • Clarke, S.M.1    Griebsch, J.H.2    Simpson, T.W.3
  • 5
    • 17844365596 scopus 로고    scopus 로고
    • Artificial neural network and support vector machine approach for locating faults in radial distribution systems
    • Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721.
    • (2005) IEEE Transactions on Power Delivery , vol.20 , Issue.2 , pp. 710-721
    • Thukaram, D.1    Khincha, H.P.2    Vijaynarasimha, H.P.3
  • 7
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnik V, Chapelle O. Bounds on error expectation for support vector machines. Neural Computation, 2000, 12(9): 2013-2036.
    • (2000) Neural Computation , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 8
    • 0036643075 scopus 로고    scopus 로고
    • Model selection for small sample regression
    • Chapelle O, Vapnik V, Bengio Y. Model selection for small sample regression. Machine Learning, 2002, 48(1-3): 9-23.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 9-23
    • Chapelle, O.1    Vapnik, V.2    Bengio, Y.3
  • 11
    • 0037844881 scopus 로고    scopus 로고
    • Linear dependency between " and the input noise in "-support vector regression
    • Kwok J T, Tsang I W. Linear dependency between " and the input noise in "-support vector regression. IEEE Transactions on Neural Networks, 2003,14(3): 544-553.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.3 , pp. 544-553
    • Kwok, J.T.1    Tsang, I.W.2
  • 12
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • Chang M W, Lin C J. Leave-one-out bounds for support vector regression model selection. Neural Computation, 2005, 17(5): 1188-1222.
    • (2005) Neural Computation , vol.17 , Issue.5 , pp. 1188-1222
    • Chang, M.W.1    Lin, C.J.2
  • 13
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1-3): 131-159.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 14
    • 20444505293 scopus 로고    scopus 로고
    • Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
    • ÄUstÄun B, Melssen W J, Oudenhuijzen M, Buydens L M C. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 2005, 544(1-2): 292-305.
    • (2005) Analytica Chimica Acta , vol.544 , Issue.1-2 , pp. 292-305
    • Äustäun, B.1    Melssen, W.J.2    Oudenhuijzen, M.3    Buydens, L.M.C.4
  • 15
  • 17
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 2004, 17(1): 113-126.
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.Q.2
  • 21
    • 70649100043 scopus 로고    scopus 로고
    • New support vector algorithms with parametric insensitive/margin model
    • Hao P Y. New support vector algorithms with parametric insensitive/margin model. Neural Networks, 2010, 23(1): 60-73.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 60-73
    • Hao, P.Y.1
  • 23
    • 0042552138 scopus 로고
    • A computational method for the indefinite quadratic programming problem
    • Bunch J R, Kaufman L. A computational method for the indefinite quadratic programming problem. Linear Algebra and Its Applications, 1980, 34: 341-370.
    • (1980) Linear Algebra and Its Applications , vol.34 , pp. 341-370
    • Bunch, J.R.1    Kaufman, L.2
  • 25
    • 77951886195 scopus 로고    scopus 로고
    • Support vector machine based on nodes refined decision directed acyclic graph and its application to fault diagnosis
    • Yi Hui, Song Xiao-Feng, Jiang Bin, Wang Ding-Cheng. Support vector machine based on nodes refined decision directed acyclic graph and its application to fault diagnosis. Acta Automatica Sinica, 2010, 36(3): 427-432.
    • (2010) Acta Automatica Sinica , vol.36 , Issue.3 , pp. 427-432
    • Yi, H.1    Song, X.-F.2    Jiang, B.3    Wang, D.-C.4
  • 27
    • 79958136331 scopus 로고    scopus 로고
    • Batch process monitoring based on support vector data description method
    • Ge Z Q, Gao F R, Song Z H. Batch process monitoring based on support vector data description method. Journal of Process Control, 2011, 21(6): 949-959.
    • (2011) Journal of Process Control , vol.21 , Issue.6 , pp. 949-959
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 28
    • 67650530069 scopus 로고    scopus 로고
    • Fault diagnosis techniques for dynamic systems
    • Zhou Dong-Hua, Hu Yan-Yan. Fault diagnosis techniques for dynamic systems. Acta Automatica Sinica, 2009, 35(6): 748-754.
    • (2009) Acta Automatica Sinica , vol.35 , Issue.6 , pp. 748-754
    • Zhou, D.-H.1    Hu, Y.-Y.2
  • 31
    • 0031272439 scopus 로고    scopus 로고
    • A neural-network approach to fault detection and diagnosis in industrial processes
    • Maki Y, Loparo K A. A neural-network approach to fault detection and diagnosis in industrial processes. IEEE Transactions on Control Systems Technology, 1997, 5(6): 529-541.
    • (1997) IEEE Transactions on Control Systems Technology , vol.5 , Issue.6 , pp. 529-541
    • Maki, Y.1    Loparo, K.A.2
  • 32
    • 76549132623 scopus 로고    scopus 로고
    • Complex process quality prediction using modified kernel partial least squares
    • Zhang Y W, Teng Y D, Zhang Y. Complex process quality prediction using modified kernel partial least squares. Chemical Engineering Science, 2010, 65(6): 2153-2158.
    • (2010) Chemical Engineering Science , vol.65 , Issue.6 , pp. 2153-2158
    • Zhang, Y.W.1    Teng, Y.D.2    Zhang, Y.3
  • 34
    • 76849100172 scopus 로고    scopus 로고
    • Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
    • Zhang Y W, Zhou H, Qin S J, Chai T Y. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Transactions on Industrial Informatics, 2010, 6(1): 3-10.
    • (2010) IEEE Transactions on Industrial Informatics , vol.6 , Issue.1 , pp. 3-10
    • Zhang, Y.W.1    Zhou, H.2    Qin, S.J.3    Chai, T.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.