-
3
-
-
84899013173
-
Support vector regression machines
-
H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. Vapnik Support vector regression machines M.C. Mozer, M.I. Jordan, T. Petsche, Advances in Neural Information Processing Systems vol. 9 1997 MIT Press Cambridge, MA 155 161
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
4
-
-
4043137356
-
A tutorial on support vector regression
-
A. Smola, and B. Sclkopf A tutorial on support vector regression Statistics and Computing 14 2004 199 222
-
(2004)
Statistics and Computing
, vol.14
, pp. 199-222
-
-
Smola, A.1
Sclkopf, B.2
-
5
-
-
0007013868
-
The value of information
-
G. Feltham The value of information Accounting Review 43 4 1968 684 696
-
(1968)
Accounting Review
, vol.43
, Issue.4
, pp. 684-696
-
-
Feltham, G.1
-
8
-
-
0346864612
-
Behavioral aspects of data production and teir impact on data quality
-
D. Te'eni Behavioral aspects of data production and teir impact on data quality Journal of Database Management 4 2 1993 30 38
-
(1993)
Journal of Database Management
, vol.4
, Issue.2
, pp. 30-38
-
-
Te'Eni, D.1
-
11
-
-
51749084890
-
Weighted support vector regression for robust single model estimation: Application to motion segmentation in image sequences
-
F. Dufrenois, J. Colliez, D. Hamad, Weighted support vector regression for robust single model estimation: application to motion segmentation in image sequences, in: Neural Networks, 2007, IJCNN 2007, International Joint Conference on, 2007, pp. 586591.
-
(2007)
Neural Networks, 2007, IJCNN 2007, International Joint Conference on
, pp. 586-591
-
-
Dufrenois, F.1
Colliez, J.2
Hamad, D.3
-
12
-
-
1542680961
-
Heteroscedastic kernel ridge regression
-
G.C. Cawley, N.L.C. Talbot, R.J. Foxall, S.R. Dorling, and D.P. Mandic Heteroscedastic kernel ridge regression Neurocomputing 57 2004 105 124
-
(2004)
Neurocomputing
, vol.57
, pp. 105-124
-
-
Cawley, G.C.1
Talbot, N.L.C.2
Foxall, R.J.3
Dorling, S.R.4
Mandic, D.P.5
-
15
-
-
85161961443
-
Learning bounds for domain adaptation
-
MIT Press Cambridge, MA
-
J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and F. Wortman Learning bounds for domain adaptation Advances in Neural Information Processing Systems vol. 20 2008 MIT Press Cambridge, MA 129 136
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 129-136
-
-
Blitzer, J.1
Crammer, K.2
Kulesza, A.3
Pereira, F.4
Wortman, F.5
-
16
-
-
0037721392
-
Asymptotically optimal choice of -loss for support vector machines
-
Springer-Verlag
-
A.J. Smola, N. Murata, B. Sclkopf, and K.R. Mller Asymptotically optimal choice of -loss for support vector machines Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing 1998 Springer-Verlag 105 110
-
(1998)
Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing
, pp. 105-110
-
-
Smola, A.J.1
Murata, N.2
Sclkopf, B.3
Mller, K.R.4
-
18
-
-
72749103709
-
Discovering regression data quality through clustering methods
-
18th Italian Workshop on Neural Networks: WIRN 2008, 2224 May 2008 IOS Press Vietri sul Mare
-
D. Malchiodi, S. Bassis, and L. Valerio Discovering regression data quality through clustering methods New Directions in Neural Networks 18th Italian Workshop on Neural Networks: WIRN 2008, 2224 May 2008 2009 IOS Press Vietri sul Mare 76 85
-
(2009)
New Directions in Neural Networks
, pp. 76-85
-
-
Malchiodi, D.1
Bassis, S.2
Valerio, L.3
-
19
-
-
38049181073
-
A modified SVM classification algorithm for data of variable quality
-
Springer-Verlag Berlin, Heidelberg
-
B. Apolloni, D. Malchiodi, and L. Natali A modified SVM classification algorithm for data of variable quality Knowledge-Based Intelligent Information and Engineering Systems 2007, Part III 2007 Springer-Verlag Berlin, Heidelberg 131 139
-
(2007)
Knowledge-Based Intelligent Information and Engineering Systems 2007, Part III
, pp. 131-139
-
-
Apolloni, B.1
Malchiodi, D.2
Natali, L.3
-
20
-
-
84864042015
-
Learning from data of variable quality
-
K. Crammer, M. Kearns, and J. Wortman Learning from data of variable quality Y. Weiss, B. Schlkopf, J. Platt, Advances in Neural Information Processing Systems vol. 18 2006 MIT press Cambridge, MA 219 226
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 219-226
-
-
Crammer, K.1
Kearns, M.2
Wortman, J.3
-
21
-
-
0001224048
-
Sparse bayesian learning and the relevance vector machine
-
M.E. Tipping, Sparse bayesian learning and the relevance vector machine, Journal of Machine Learning Research. 1 (201) 211-244.
-
Journal of Machine Learning Research
, vol.1
, Issue.201
, pp. 211-244
-
-
Tipping, M.E.1
-
22
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
J.C. MacKay Bayesian methods for backpropagation networks E. Domany, J.L. van Hemmen, K. Schulten, Models of Neural Networks III 1994 Springer 211 254 ch. 6
-
(1994)
Models of Neural Networks III
, pp. 211-254
-
-
MacKay, J.C.1
-
24
-
-
77955658152
-
Biomechanical investigation to determine physical and traumatological differentiating criteria for the maximum load capacity of head and vertebral column with and without protective helmet under the effects of impact
-
University of Heidelberg
-
G. Schmidt, R. Mattern, F. Schueler, Biomechanical investigation to determine physical and traumatological differentiating criteria for the maximum load capacity of head and vertebral column with and without protective helmet under the effects of impact, in: EEC Research Program on Biomechanics of Impact, Final Report., Tech. Rep., University of Heidelberg, 1981.
-
(1981)
EEC Research Program on Biomechanics of Impact, Final Report., Tech. Rep.
-
-
Schmidt, G.1
Mattern, R.2
Schueler, F.3
-
25
-
-
0002634989
-
Exposition of statistical graphics technology
-
L.H. Cox, M.M. Johnson, K. Kafadar, Exposition of statistical graphics technology, in: ASA Proc. Stat. Comp. Section, 1982, pp. 5556.
-
(1982)
ASA Proc. Stat. Comp. Section
, pp. 55-56
-
-
Cox, L.H.1
Johnson, M.M.2
Kafadar, K.3
|