메뉴 건너뛰기




Volumn 45, Issue 5, 2009, Pages 584-592

Candidate working set strategy based SMO algorithm in support vector machine

Author keywords

Candidate working set strategy; Kernel cache; SMO; Support vector machine

Indexed keywords

CACHE PERFORMANCE; CANDIDATE WORKING SET STRATEGY; COMPUTATIONAL COSTS; EFFICIENT ALGORITHM; KERNEL CACHE; LARGE-SCALE DATASETS; NEW STRATEGY; OBJECTIVE FUNCTIONS; SEQUENTIAL MINIMAL OPTIMIZATION; SMO; SMO ALGORITHMS; TRAINING SPEED; TRAINING TIME; WORKING SET; WORKING SET SELECTION;

EID: 67650113615     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2009.05.002     Document Type: Article
Times cited : (18)

References (23)
  • 1
    • 34548657443 scopus 로고    scopus 로고
    • Working set selection using functional gain for LS-SVM
    • Bo L., and Jiao L. Working set selection using functional gain for LS-SVM. IEEE Transactions on Neural Networks 18 5 (2007) 1541-1544
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.5 , pp. 1541-1544
    • Bo, L.1    Jiao, L.2
  • 2
    • 0004322633 scopus 로고    scopus 로고
    • Simple learning algorithms for training support vector machines
    • Technical Report, University of Bristol
    • Campbell, C., & Cristianini, N. (1998). Simple learning algorithms for training support vector machines. Technical Report, University of Bristol .
    • (1998)
    • Campbell, C.1    Cristianini, N.2
  • 3
    • 67650138385 scopus 로고    scopus 로고
    • Chang, C. C, & Lin, C. J, 2001, LIBSVM: A library for support vector machines version 2.3
    • Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines (version 2.3) .
  • 4
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • Chen P.-H., Fan R.-E., and Lin C.-J. A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Networks 17 (2006) 893-908
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., and Vapnik V. Support vector networks. Machine Learning 20 3 (1995) 273-297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • Fan R.-E., Chen P.-H., and Lin C.-J. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research 6 (2005) 1889-1918
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 7
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • Flake G., and Lawrence S. Efficient SVM regression training with SMO. Machine Learning 46 1/3 (2002) 271-290
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 271-290
    • Flake, G.1    Lawrence, S.2
  • 9
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • Hsu C.-W., and Lin C.-J. A simple decomposition method for support vector machines. Machine Learning 46 (2002) 291-314
    • (2002) Machine Learning , vol.46 , pp. 291-314
    • Hsu, C.-W.1    Lin, C.-J.2
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Schoolkopf B., Burgrs C.J.C., and Smola A. (Eds), MIT press, Cambridge, MA
    • Joachims T. Making large-scale SVM learning practical. In: Schoolkopf B., Burgrs C.J.C., and Smola A. (Eds). Advances in kernel methods support vector learning (1998), MIT press, Cambridge, MA 169-184
    • (1998) Advances in kernel methods support vector learning , pp. 169-184
    • Joachims, T.1
  • 13
    • 55949121544 scopus 로고    scopus 로고
    • Text classification from unlabeled documents with bootstrapping and feature projection techniques
    • Ko Y., and Seo J. Text classification from unlabeled documents with bootstrapping and feature projection techniques. Information Processing and Management 45 (2009) 70-83
    • (2009) Information Processing and Management , vol.45 , pp. 70-83
    • Ko, Y.1    Seo, J.2
  • 14
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Lin C.J. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks. 12 6 (2001) 1288-1298
    • (2001) IEEE Transactions on Neural Networks. , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.J.1
  • 15
    • 38449123027 scopus 로고    scopus 로고
    • Microarray data classification using automatic svm kernel selection
    • Nahar J., Ali S., and Chen Y.P.P. Microarray data classification using automatic svm kernel selection. DNA and Cell Biology 26 10 (2007) 707-712
    • (2007) DNA and Cell Biology , vol.26 , Issue.10 , pp. 707-712
    • Nahar, J.1    Ali, S.2    Chen, Y.P.P.3
  • 17
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Schölkopf B., Burges C., and Smola A. (Eds), MIT Press, Cambridge, MA
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Schölkopf B., Burges C., and Smola A. (Eds). Advances in kernel methods - support vector learning (1999), MIT Press, Cambridge, MA
    • (1999) Advances in kernel methods - support vector learning
    • Platt, J.1
  • 19
    • 36549017281 scopus 로고    scopus 로고
    • Polynomial kernel adaptation and extensions to the SVM classifier learning
    • Ramy S., Saman H.K., and Li J. Polynomial kernel adaptation and extensions to the SVM classifier learning. Neural Computing and Applications 17 (2008) 19-25
    • (2008) Neural Computing and Applications , vol.17 , pp. 19-25
    • Ramy, S.1    Saman, H.K.2    Li, J.3
  • 20
    • 34547830949 scopus 로고    scopus 로고
    • On the complexity of working set selection
    • Simon H.U. On the complexity of working set selection. Theoretical Computer Science 382 3 (2007) 262-279
    • (2007) Theoretical Computer Science , vol.382 , Issue.3 , pp. 262-279
    • Simon, H.U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.