-
2
-
-
4043137356
-
A tutorial on support vector regression
-
Aug.
-
A. Smola and B. Schölkopf, "A tutorial on support vector regression," Stat. Comput., vol.14, no.3, pp. 199-222, Aug. 2004.
-
(2004)
Stat. Comput.
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.1
Schölkopf, B.2
-
3
-
-
33846092558
-
Reduced support vector machines: A statistical theory
-
Jan.
-
Y. J. Lee and S. Y. Huang, "Reduced support vector machines: A statistical theory," IEEE Trans. Neural Netw., vol.18, no.1, pp. 1-13, Jan. 2007.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.1
, pp. 1-13
-
-
Lee, Y.J.1
Huang, S.Y.2
-
4
-
-
33746899028
-
Multidimensional vector regression for accurate and low-cost location estimation in pervasive computing
-
Sep.
-
J. J. Pan, J. T. Kwok, Q. Yang, and Y. Q. Chen, "Multidimensional vector regression for accurate and low-cost location estimation in pervasive computing," IEEE Trans. Knowl. Data Eng., vol.18, no.9, pp. 1181-1193, Sep. 2006.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.9
, pp. 1181-1193
-
-
Pan, J.J.1
Kwok, J.T.2
Yang, Q.3
Chen, Y.Q.4
-
5
-
-
33847712243
-
Kernel regression for image processing and reconstruction
-
Feb.
-
H. Takeda, S. Farsiu, and P. Milanfar, "Kernel regression for image processing and reconstruction," IEEE Trans. Image Process., vol.16, no.2, pp. 349-366, Feb. 2007.
-
(2007)
IEEE Trans. Image Process.
, vol.16
, Issue.2
, pp. 349-366
-
-
Takeda, H.1
Farsiu, S.2
Milanfar, P.3
-
6
-
-
2142643698
-
A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension
-
Apr.
-
Y. Tan and J. Wang, "A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension," IEEE Trans. Knowl. Data Eng., vol.16, no.4, pp. 385-395, Apr. 2004.
-
(2004)
IEEE Trans. Knowl. Data Eng.
, vol.16
, Issue.4
, pp. 385-395
-
-
Tan, Y.1
Wang, J.2
-
9
-
-
0025490985
-
Networks for approximation and learning
-
Sep.
-
T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol.78, no.9, pp. 1481-1497, Sep. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
10
-
-
0001219859
-
Regularization theory and neural networks architectures
-
Mar.
-
F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol.7, no.2, pp. 219-269, Mar. 1995.
-
(1995)
Neural Comput
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
11
-
-
0034419669
-
Regularization networks and support vector machines
-
Apr.
-
T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," Adv. Comput. Math., vol.13, no.1, pp. 1-50, Apr. 2000.
-
(2000)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
12
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Jun.
-
A. J. Smola, B. Schölkopf, and K. R. Müller, "The connection between regularization operators and support vector kernels," Neural Netw., vol.11, no.4, pp. 637-649, Jun. 1998.
-
(1998)
Neural Netw
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.R.3
-
13
-
-
33847386213
-
The gray-code filter kernels
-
Mar.
-
G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, "The gray-code filter kernels," IEEE Trans. Pattern Anal. Mach. Intell., vol.29, no.3, pp. 382-393, Mar. 2007.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.3
, pp. 382-393
-
-
Ben-Artzi, G.1
Hel-Or, H.2
Hel-Or, Y.3
-
14
-
-
18144401294
-
A novel kernel method for clustering
-
May.
-
F. Camastra and A. Verri, "A novel kernel method for clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.5, pp. 801-805, May 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.5
, pp. 801-805
-
-
Camastra, F.1
Verri, A.2
-
15
-
-
33846063532
-
Kernel classifier construction using orthogonal forward selection and boosting with fisher ratio class separability measure
-
DOI 10.1109/TNN.2006.881487
-
S. Chen, X. X. Wang, X. Hong, and C. J. Harris, "Kernel classifier construction using orthogonal forward selection and boosting with fisher ratio class separability measure," IEEE Trans. Neural Netw., vol.17, no.6, pp. 1652-1656, Nov. 2006. (Pubitemid 44824278)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.6
, pp. 1652-1656
-
-
Chen, S.1
Wang, X.X.2
Hong, X.3
Harris, C.J.4
-
16
-
-
33645988196
-
From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space
-
Jun.
-
S. K. Zhou and R. Chellappa, "From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel Hilbert space," IEEE Trans. Pattern Anal. Mach. Intell., vol.28, no.6, pp. 917-929, Jun. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.6
, pp. 917-929
-
-
Zhou, S.K.1
Chellappa, R.2
-
17
-
-
24644515417
-
Kernel machine-based one-parameter regularized fisher discriminant method for face recognition
-
DOI 10.1109/TSMCB.2005.844596
-
W. S. Chen, P. C. Yuen, J. Huang, and D. Q. Dai, "Kernel machinebased one-parameter regularized Fisher discriminant method for face recognition," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.35, no.4, pp. 659-669, Aug. 2005. (Pubitemid 41655573)
-
(2005)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.35
, Issue.4
, pp. 659-669
-
-
Chen, W.-S.1
Yuen, P.C.2
Huang, J.3
Dai, D.-Q.4
-
18
-
-
33846086864
-
Nonlinear knowledge in kernel approximation
-
Jan.
-
O. L. Mangasarian and E. W. Wild, "Nonlinear knowledge in kernel approximation," IEEE Trans. Neural Netw., vol.18, no.1, pp. 300-306, Jan. 2007.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.1
, pp. 300-306
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
19
-
-
33750379440
-
Non-flat function estimation with a multi-scale support vector regression
-
Dec.
-
D. N. Zheng, J. X. Wang, and Y. N. Zhao, "Non-flat function estimation with a multi-scale support vector regression," Neurocomputing, vol.70, no.1-3, pp. 420-429, Dec. 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 420-429
-
-
Zheng, D.N.1
Wang, J.X.2
Zhao, Y.N.3
-
20
-
-
34547938101
-
Finding numerical derivatives for unstructured and noisy data by multiscale kernels
-
L. V. Ling, "Finding numerical derivatives for unstructured and noisy data by multiscale kernels," SIAM J. Numer. Anal., vol.44, no.4, pp. 1780-1800, 2006.
-
(2006)
SIAM J. Numer. Anal.
, vol.44
, Issue.4
, pp. 1780-1800
-
-
Ling, L.V.1
-
21
-
-
33646732403
-
Multiscale kernels
-
Nov.
-
R. Opfer, "Multiscale kernels," Adv. Comput. Math., vol.25, no.4, pp. 357-380, Nov. 2006.
-
(2006)
Adv. Comput. Math.
, vol.25
, Issue.4
, pp. 357-380
-
-
Opfer, R.1
-
22
-
-
33644555212
-
Wavelet kernel penalized estimation for non-equispaced design regression
-
Mar.
-
U. Amato, A. Antoniadis, and M. Pensky, "Wavelet kernel penalized estimation for non-equispaced design regression," Stat. Comput., vol.16, no.1, pp. 37-55, Mar. 2006.
-
(2006)
Stat. Comput.
, vol.16
, Issue.1
, pp. 37-55
-
-
Amato, U.1
Antoniadis, A.2
Pensky, M.3
-
23
-
-
33750321905
-
A functional waveletkernel approach for time series prediction
-
Mar.
-
A. Antoniadis, E. Paparoditis, and T. Sapatinas, "A functional waveletkernel approach for time series prediction," J. R. Stat. Soc., Ser. B Stat. Methodol., vol.68, no.5, pp. 837-857, Mar. 2006.
-
(2006)
J. R. Stat. Soc., Ser. B Stat. Methodol.
, vol.68
, Issue.5
, pp. 837-857
-
-
Antoniadis, A.1
Paparoditis, E.2
Sapatinas, T.3
-
24
-
-
17444391661
-
Non-parametric regression with wavelet kernels
-
Mar.
-
A. Rakotomamonjy, X. Mary, and S. Canu, "Non-parametric regression with wavelet kernels," Appl. Stoch. Models Bus. Ind., vol.21, no.2, pp. 153-163, Mar. 2005.
-
(2005)
Appl. Stoch. Models Bus. Ind.
, vol.21
, Issue.2
, pp. 153-163
-
-
Rakotomamonjy, A.1
Mary, X.2
Canu, S.3
-
25
-
-
0742290039
-
Wavelet support vector machine
-
Feb.
-
L. Zhang, W. Zhou, and L. Jiao, "Wavelet support vector machine," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.34, no.1, pp. 34-39, Feb. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.34
, Issue.1
, pp. 34-39
-
-
Zhang, L.1
Zhou, W.2
Jiao, L.3
-
26
-
-
0035461049
-
On a class of support vector kernels based on frames in function Hilbert spaces
-
Sep.
-
J. B. Gao, C. J. Harris, and S. R. Gunn, "On a class of support vector kernels based on frames in function Hilbert spaces," Neural Comput., vol.13, no.9, pp. 1975-1994, Sep. 2001.
-
(2001)
Neural Comput
, vol.13
, Issue.9
, pp. 1975-1994
-
-
Gao, J.B.1
Harris, C.J.2
Gunn, S.R.3
-
27
-
-
25444533296
-
Frames, reproducing kernels, regularization and learning
-
Dec.
-
A. Rakotomamonjy and S. Canu, "Frames, reproducing kernels, regularization and learning," J. Mach. Learn. Res., vol.6, pp. 1485-1515, Dec. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 1485-1515
-
-
Rakotomamonjy, A.1
Canu, S.2
-
28
-
-
33646112177
-
Tight frame expansions of multiscale reproducing kernels in Sobolev spaces
-
R. Opfer, "Tight frame expansions of multiscale reproducing kernels in Sobolev spaces," Appl. Comput. Harmon. Anal., vol.20, no.3, pp. 357-374, 2006.
-
(2006)
Appl. Comput. Harmon. Anal.
, vol.20
, Issue.3
, pp. 357-374
-
-
Opfer, R.1
-
29
-
-
1842715640
-
On approximation with spline generated framelets
-
R. Gribonval and M. Nielsen, "On approximation with spline generated framelets," Constr. Approx., vol.20, no.2, pp. 207-232, 2004.
-
(2004)
Constr. Approx.
, vol.20
, Issue.2
, pp. 207-232
-
-
Gribonval, R.1
Nielsen, M.2
-
30
-
-
33750998519
-
Symmetric interplatory framelets and their erasure recovery properties
-
Berlin, Germany: Springer-Verlag
-
O. Amrani, A. Z. Averbuch, and V. A. Zheludev, Symmetric Interplatory Framelets and Their Erasure Recovery Properties, vol.4105, Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2006, pp. 643-649.
-
(2006)
Lecture Notes in Computer Science
, vol.4105
, pp. 643-649
-
-
Amrani, O.1
Averbuch, A.Z.2
Zheludev, V.A.3
-
31
-
-
33645968985
-
Image denoising using a tight frame
-
May.
-
L. X. Shen, M. Papadakis, I. A. Kakadiaris, I. Konstantinidis, D. Kouri, and D. Hoffman, "Image denoising using a tight frame," IEEE Trans. Image Process., vol.15, no.5, pp. 1254-1263, May 2006.
-
(2006)
IEEE Trans. Image Process.
, vol.15
, Issue.5
, pp. 1254-1263
-
-
Shen, L.X.1
Papadakis, M.2
Kakadiaris, I.A.3
Konstantinidis, I.4
Kouri, D.5
Hoffman, D.6
-
32
-
-
38049151303
-
Framelets: MRA-based constructions of wavelet frames
-
I. Daubechies, B. Han, A. Ron, and Z. Shen, "Framelets: MRA-based constructions of wavelet frames," Appl. Comput. Harmon. Anal., vol.124, pp. 44-88, 2003.
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.124
, pp. 44-88
-
-
Daubechies, I.1
Han, B.2
Ron, A.3
Shen, Z.4
-
33
-
-
38049125745
-
On a new class of framelet kernels for support vector regression and regularization networks
-
Berlin, Germany: Springer-Verlag
-
W. F. Zhang, D. Q. Dai, and H. Yan, On a New Class of Framelet Kernels for Support Vector Regression and Regularization Networks, vol.4426, Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2007, pp. 355-366.
-
(2007)
Lecture Notes in Artificial Intelligence
, vol.4426
, pp. 355-366
-
-
Zhang, W.F.1
Dai, D.Q.2
Yan, H.3
-
35
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Mar.
-
K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, "An introduction to kernel-based learning algorithms," IEEE Trans. Neural Netw., vol.12, no.2, pp. 181-201, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
36
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
Sep.
-
B. Schökopf, S. Mika, C. Burges, P. Knirsch, K. R. Müller, G. Räsch, and A. J. Smola, "Input space versus feature space in kernel-based methods," IEEE Trans. Neural Netw., vol.10, no.5, pp. 1000-1017, Sep. 1999.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schökopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.R.5
Räsch, G.6
Smola, A.J.7
-
37
-
-
0040709212
-
Construction of compactly supported affine frames in L2(R)
-
A. Ron and Z. Shen, "Construction of compactly supported affine frames in L2(R)," Math. Comput., vol.67, pp. 191-207, 1998.
-
(1998)
Math. Comput.
, vol.67
, pp. 191-207
-
-
Ron, A.1
Shen, Z.2
-
40
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol.46, no.1-3, pp. 131-159, Jan. 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
41
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
F. Cuker and S. Smale, "Best choices for regularization parameters in learning theory: On the bias-variance problem," Found. Comput. Math., vol.2, no.4, pp. 413-428, 2002.
-
(2002)
Found. Comput. Math.
, vol.2
, Issue.4
, pp. 413-428
-
-
Cuker, F.1
Smale, S.2
-
42
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Dec.
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, "The entire regularization path for the support vector machine," J. Mach. Learn. Res., vol.5, pp. 1391-1415, Dec. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
43
-
-
34547980120
-
A kernel path algorithm for support vector machines
-
G. Wang, D. Y. Yeung, and F. H. Lochovsky, "A kernel path algorithm for support vector machines," in Proc. 24th ICML, 2007, pp. 951-958.
-
(2007)
Proc. 24th ICML
, pp. 951-958
-
-
Wang, G.1
Yeung, D.Y.2
Lochovsky, F.H.3
-
44
-
-
0012780893
-
Wavelet estimators in nonparametric regression: A comparative simulation study
-
Jun.
-
A. Antoniadis, J. Bigot, and T. Sapatinas, "Wavelet estimators in nonparametric regression: A comparative simulation study," J. Stat. Softw., vol.6, no.6, pp. 1-83, Jun. 2001.
-
(2001)
J. Stat. Softw.
, vol.6
, Issue.6
, pp. 1-83
-
-
Antoniadis, A.1
Bigot, J.2
Sapatinas, T.3
|