메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1-24

Machine Learning Techniques in Remote Sensing Data Analysis

Author keywords

Development in field of (supervised) classification machine learning concepts; Feature extraction and feature selection and dimensionality reduction; ISODATA (iterative self organizing data analysis); Machine learning (ML) artificial intelligence area and learning from data; Machine learning algorithms in remote sensing and supervised classification; Machine learning techniques in remote sensing data analysis; Neural networks (NN) in pattern recognition and remote sensing context; Remote sensing challenges; Remote sensing paradigms; Tasseled Cap Transformation

Indexed keywords


EID: 84876037260     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470748992.ch1     Document Type: Chapter
Times cited : (23)

References (70)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer, E. and Kohavi, R. (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36(1), 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 7
    • 0025453627 scopus 로고
    • Neural network approaches versus statisticalmethods in classification of multi-source remote-sensing data
    • Benediktsson, J.A., Swain, P.H. and Ersoy, O.K. (1990) Neural network approaches versus statisticalmethods in classification of multi-source remote-sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28(4), 540-552.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , Issue.4 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 9
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press.
    • Bishop, C. (1995) Neural Networks for Pattern Recognition. Oxford University Press.
    • (1995)
    • Bishop, C.1
  • 10
    • 45849126857 scopus 로고    scopus 로고
    • A novel approach to unsupervised change detection based on a semi-supervised SVM and a similarity measure
    • Bovolo, F., Bruzzone, L. and Marconcini, M. (2008) A novel approach to unsupervised change detection based on a semi-supervised SVM and a similarity measure. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2070-2082.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.7 , pp. 2070-2082
    • Bovolo, F.1    Bruzzone, L.2    Marconcini, M.3
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996) Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001) Random forests. Machine Learning, 45(1), 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 33748331356 scopus 로고    scopus 로고
    • A multilevel context-based system for classification of very high spatial resolution images
    • Bruzzone, L. and Carlin, L. (2006) A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2587-2600.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2587-2600
    • Bruzzone, L.1    Carlin, L.2
  • 15
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
    • Bruzzone, L. and Prieto, D. (1999) A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 37(2), 1179-1184.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.2 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.2
  • 16
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semi-supervised classification of remote-sensing images
    • Bruzzone, L., Chi, M.M. and Marconcini, M. (2006) A novel transductive SVM for semi-supervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3363-3373.
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.M.2    Marconcini, M.3
  • 18
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Bryll, L., Gutiérrez-Osuna, R. and Quek, F. (2003) Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6), 1291-1302.
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, L.1    Gutiérrez-Osuna, R.2    Quek, F.3
  • 22
    • 0025889915 scopus 로고
    • ARTMAP: Supervised real-time learning and classification of non-stationary data by a self-organizing neural network
    • Carpenter, G.A., Grossberg, S. and Reynolds, J.H. (1991) ARTMAP: Supervised real-time learning and classification of non-stationary data by a self-organizing neural network. Neural Networks, 4(5), 565-588.
    • (1991) Neural Networks , vol.4 , Issue.5 , pp. 565-588
    • Carpenter, G.A.1    Grossberg, S.2    Reynolds, J.H.3
  • 23
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP:A neural network architecture for incremental supervised learning of analog multi-dimensional maps
    • Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H. and Rosen, D.B. (1992) Fuzzy ARTMAP:A neural network architecture for incremental supervised learning of analog multi-dimensional maps. Neural Networks, IEEE Transactions on, 3(5), 698-713.
    • (1992) Neural Networks, IEEE Transactions on , vol.3 , Issue.5 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 24
    • 0003984676 scopus 로고    scopus 로고
    • Hyperspectral imaging. Techniques for spectral detection and classification
    • Kluwer Academic.
    • Chang, C. (2003) Hyperspectral imaging. Techniques for spectral detection and classification. Kluwer Academic.
    • (2003)
    • Chang, C.1
  • 25
    • 33749246680 scopus 로고    scopus 로고
    • Training a Support Vector Machine in the Primal Neural Information Processing
    • MA: MIT Press Cambridge.
    • Chapelle, O. (2007) Training a Support Vector Machine in the Primal Neural Information Processing, pp. 29-50. MA: MIT Press Cambridge.
    • (2007) , pp. 29-50
    • Chapelle, O.1
  • 26
    • 34249810956 scopus 로고    scopus 로고
    • Semi-supervised classification of hyperspectral images by SVMs optimized in the primal
    • Chi, M.M. and Bruzzone, L. (2007) Semi-supervised classification of hyperspectral images by SVMs optimized in the primal. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1870-1880.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.M.1    Bruzzone, L.2
  • 28
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • 2nd edn. John Wiley & Sons.
    • Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern Classification. 2nd edn. John Wiley & Sons.
    • (2001)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 33
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody, G.M. and Mathur, A. (2004) A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1335-1343.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 34
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • 13th International Conference of Machine Learning, Bari, Italy.
    • Freund, Y. and Schapire, R.E. (1996) Experiments with a new boosting algorithm 13th International Conference of Machine Learning, Bari, Italy.
    • (1996)
    • Freund, Y.1    Schapire, R.E.2
  • 35
    • 0001219859 scopus 로고
    • Regularization theory and neural network architectures
    • Girosi, F., Jones, M. and Poggio, T. (1995) Regularization theory and neural network architectures. Neural Computation 7, 219:269.
    • (1995) Neural Computation , vol.7 , Issue.219 , pp. 269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 42
  • 43
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.F. (1968) On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, IT-14, 55-63.
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , pp. 55-63
    • Hughes, G.F.1
  • 45
    • 39049142960 scopus 로고    scopus 로고
    • Dimensionality reduction techniques: an operational comparison on multi-spectral satellite images using unsupervised clustering
    • Journaux, L., Xavier, X., Foucherot, I. and Gouton, P. (2006) Dimensionality reduction techniques: an operational comparison on multi-spectral satellite images using unsupervised clustering IEEE 7th Nordic Signal Processing Symposium.
    • (2006) IEEE 7th Nordic Signal Processing Symposium.
    • Journaux, L.1    Xavier, X.2    Foucherot, I.3    Gouton, P.4
  • 47
    • 0003406424 scopus 로고
    • A course in the geometry of n-dimensions
    • New York: Dover Publication.
    • Kendall, M.G. (1961) A course in the geometry of n-dimensions. New York: Dover Publication.
    • (1961)
    • Kendall, M.G.1
  • 48
    • 3843151477 scopus 로고    scopus 로고
    • Distance metrics and band selection in hyperspectral processing with application to material identification and spectral libraries
    • Keshava, N. (2004) Distance metrics and band selection in hyperspectral processing with application to material identification and spectral libraries. IEEE Transactions on Geoscience and Remote Sensing, 42, 1552-1565.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1552-1565
    • Keshava, N.1
  • 50
    • 45849107278 scopus 로고    scopus 로고
    • Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data
    • Koetz, B., Morsdorf, F., van der, Linden, S., Curt, T. and Allgöwer, B. (2008) Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. Forest Ecology and Management, 256(3), 263-271.
    • (2008) Forest Ecology and Management , vol.256 , Issue.3 , pp. 263-271
    • Koetz, B.1    Morsdorf, F.2    Van Der, L.S.3    Curt, T.4    Allgöwer, B.5
  • 51
    • 0141934861 scopus 로고    scopus 로고
    • Signal Theory Methods in Multi-spectral Remote Sensing
    • New Jersey: John Wiley & Sons.
    • Landgrebe, D.A. (2003) Signal Theory Methods in Multi-spectral Remote Sensing. New Jersey: John Wiley & Sons.
    • (2003)
    • Landgrebe, D.A.1
  • 52
    • 33646909282 scopus 로고    scopus 로고
    • Méthodes d'analyse d'images hyperspectrales. Exploitation du capteur aéroporté CASI pour des applications de cartographie agro-environnementale en Bretagne
    • PhD thesis Universit é de Rennes 1.
    • Lennon, M. (2002) Méthodes d'analyse d'images hyperspectrales. Exploitation du capteur aéroporté CASI pour des applications de cartographie agro-environnementale en Bretagne. PhD thesis Universit é de Rennes 1.
    • (2002)
    • Lennon, M.1
  • 53
    • 0036395399 scopus 로고    scopus 로고
    • Curvilinear component analysis for nonlinear dimensionality reduction of hyperspectral images
    • Lennon, M., Mercier, G., Mouchot, M. and Hubert-Moy, L. (2001) Curvilinear component analysis for nonlinear dimensionality reduction of hyperspectral images. Proceedings SPIE, 4541, 157-168.
    • (2001) Proceedings SPIE , vol.4541 , pp. 157-168
    • Lennon, M.1    Mercier, G.2    Mouchot, M.3    Hubert-Moy, L.4
  • 54
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F. and Bruzzone, L. (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778-1790.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 55
    • 0035440535 scopus 로고    scopus 로고
    • A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multi-temporal vegetation index data
    • Muchoney, D. and Williamson, J. (2001) A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multi-temporal vegetation index data. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 1969-1977.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.9 , pp. 1969-1977
    • Muchoney, D.1    Williamson, J.2
  • 56
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of DAIS hyperspectral data
    • Pal, M. and Mather, P. (2006) Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing, 27(14), 2895-2916.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 2895-2916
    • Pal, M.1    Mather, P.2
  • 57
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M. and Mather, P.M. (2005) Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007-1011.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.5 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 58
    • 0029341018 scopus 로고
    • Adetailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • Paola, J.D. and Schowengerdt, R.A. (1995) Adetailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 981-996.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 59
    • 14644399190 scopus 로고    scopus 로고
    • Analysis of remotely sensed data: The formative decades and the future
    • Richards, J.A. (2005) Analysis of remotely sensed data: The formative decades and the future. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 422-432.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 422-432
    • Richards, J.A.1
  • 60
    • 84930239955 scopus 로고    scopus 로고
    • Remote Sensing Digital Image Analysis: An Introduction
    • Springer.
    • Richards, J.A. and Jia, X. (1999) Remote Sensing Digital Image Analysis: An Introduction. Springer.
    • (1999)
    • Richards, J.A.1    Jia, X.2
  • 62
    • 0030291988 scopus 로고    scopus 로고
    • An experimental comparison of neural and statistical nonparametric algorithms for supervised classification of remote-sensing images
    • Serpico, S., Bruzzone, L. and Roli, F. (1996) An experimental comparison of neural and statistical nonparametric algorithms for supervised classification of remote-sensing images. Pattern Recognition Letters, 17(13), 1331-1341.
    • (1996) Pattern Recognition Letters , vol.17 , Issue.13 , pp. 1331-1341
    • Serpico, S.1    Bruzzone, L.2    Roli, F.3
  • 63
  • 64
    • 0034482007 scopus 로고    scopus 로고
    • Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping
    • Steele, B.M. (2000) Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sensing of Environment, 74(3), 545-556.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 545-556
    • Steele, B.M.1
  • 65
    • 3843076325 scopus 로고    scopus 로고
    • Linearized vegetation indices based on a formal statistical framework
    • Ünsalan, C. and Boyer, K.L. (2004) Linearized vegetation indices based on a formal statistical framework. IEEE Transactions on Geoscience and Remote Sensing, 42(7), 1575-1585.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.7 , pp. 1575-1585
    • Ünsalan, C.1    Boyer, K.L.2
  • 66
    • 45849104692 scopus 로고    scopus 로고
    • Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines
    • 013543
    • van der, Linden, S., Janz, A., Waske, B., Eiden, M. and Hostert, P. (2007) Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. Journal of Applied Remote Sensing, 1(013543).
    • (2007) Journal of Applied Remote Sensing , vol.1
    • Van Der, L.S.1    Janz, A.2    Waske, B.3    Eiden, M.4    Hostert, P.5
  • 67
    • 0003991806 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • New York: John Wiley & Sons.
    • Vapnik, V. (1998) Statistical Learning Theory. New York: John Wiley & Sons.
    • (1998)
    • Vapnik, V.1
  • 68
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • Waske, B. and Benediktsson, J.A. (2007) Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 3858-3866.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 69
    • 45849101525 scopus 로고    scopus 로고
    • Classifying multilevel imagery from SAR and optical sensors by decision fusion
    • Waske, B. and van der, Linden, S. (2008) Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1457-1466.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.5 , pp. 1457-1466
    • Waske, B.1    Van Der, L.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.