메뉴 건너뛰기




Volumn 116, Issue 9, 2012, Pages 2775-2786

Intermolecular interactions in complex liquids: Effective fragment potential investigation of water- tert -butanol mixtures

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOLS; BINDING ENERGY; DISPERSIONS; MOLECULAR DYNAMICS; POLARIZATION;

EID: 84858021420     PISSN: 15206106     EISSN: 15205207     Source Type: Journal    
DOI: 10.1021/jp2077566     Document Type: Article
Times cited : (44)

References (73)
  • 1
    • 40449119329 scopus 로고    scopus 로고
    • Metabolic engineering delivers next-generation biofuels
    • Keasling, J. D.; Chou, H. Metabolic engineering delivers next-generation biofuels Nat. Biotechnol. 2008, 26, 298-299
    • (2008) Nat. Biotechnol. , vol.26 , pp. 298-299
    • Keasling, J.D.1    Chou, H.2
  • 2
    • 0029229889 scopus 로고
    • Liquid-Liquid Equilibria of Fuel Oxygenate Plus Water Plus Hydrocarbon Mixtures 0.1
    • Peschke, N.; Sandler, S. Liquid-Liquid Equilibria of Fuel Oxygenate Plus Water Plus Hydrocarbon Mixtures 0.1 J. Chem. Eng. Data 1995, 40, 315-320
    • (1995) J. Chem. Eng. Data , vol.40 , pp. 315-320
    • Peschke, N.1    Sandler, S.2
  • 3
    • 34247191288 scopus 로고    scopus 로고
    • Effect of different sodium halides on the self-association of tertiary butanol in water
    • Momo Jeufack, H.; Suter, D. Effect of different sodium halides on the self-association of tertiary butanol in water J. Chem. Phys. 2007, 126, 144501
    • (2007) J. Chem. Phys. , vol.126 , pp. 144501
    • Momo Jeufack, H.1    Suter, D.2
  • 4
    • 26844483075 scopus 로고    scopus 로고
    • Studies on the phase behavior of the system non-ionic surfactant/alcohol/alkane/H2O
    • Bayrak, Y.; Iscan, M. Studies on the phase behavior of the system non-ionic surfactant/alcohol/alkane/H2O Colloids Surf., A 2005, 268, 99-103
    • (2005) Colloids Surf., A , vol.268 , pp. 99-103
    • Bayrak, Y.1    Iscan, M.2
  • 5
    • 0033310731 scopus 로고    scopus 로고
    • Solubilization and phase behavior of microemulsions with mixed anionic-cationic surfactants and hexanol
    • Li, X.; Ueda, K.; Kumieda, H. Solubilization and phase behavior of microemulsions with mixed anionic-cationic surfactants and hexanol Langmuir 1999, 15, 7973-7979
    • (1999) Langmuir , vol.15 , pp. 7973-7979
    • Li, X.1    Ueda, K.2    Kumieda, H.3
  • 6
    • 34547398709 scopus 로고    scopus 로고
    • Molecular Thermodynamics of Methane Solvation in tert-Butanol-Water Mixtures
    • Lee, M.-E.; Van der Vegt, N. F. A. Molecular Thermodynamics of Methane Solvation in tert-Butanol-Water Mixtures J. Chem. Theory Comput. 2007, 3, 194-200
    • (2007) J. Chem. Theory Comput. , vol.3 , pp. 194-200
    • Lee, M.-E.1    Van Der Vegt, N.F.A.2
  • 7
    • 26944481188 scopus 로고    scopus 로고
    • Interfaces and the driving force of hydrophobic assembly
    • Chandler, D. Interfaces and the driving force of hydrophobic assembly Nature 2005, 437, 640-647
    • (2005) Nature , vol.437 , pp. 640-647
    • Chandler, D.1
  • 8
    • 2942560847 scopus 로고    scopus 로고
    • The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces
    • Jensen, M. O.; Mouritsen, O. G.; Peters, G. H. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces J. Chem. Phys. 2004, 120, 9729
    • (2004) J. Chem. Phys. , vol.120 , pp. 9729
    • Jensen, M.O.1    Mouritsen, O.G.2    Peters, G.H.3
  • 9
    • 34548859547 scopus 로고    scopus 로고
    • Two-Dimensional Attenuated Total Reflection Infrared and Near-Infrared Correlation Study of the Structure of Butyl Alcohol/Water Mixtures
    • Wojtkow, D.; Czarnecki, M. A. Two-Dimensional Attenuated Total Reflection Infrared and Near-Infrared Correlation Study of the Structure of Butyl Alcohol/Water Mixtures Appl. Spectrosc. 2007, 61, 928-934
    • (2007) Appl. Spectrosc. , vol.61 , pp. 928-934
    • Wojtkow, D.1    Czarnecki, M.A.2
  • 10
    • 33745899639 scopus 로고    scopus 로고
    • Simulation of phase separation in alcohol/water mixtures using two-body force field and standard molecular dynamics
    • Ferrari, E. S.; Burton, R. C.; Davey, R. J.; Gavezzotti, A. Simulation of phase separation in alcohol/water mixtures using two-body force field and standard molecular dynamics J. Comput. Chem. 2006, 27, 1211-1219
    • (2006) J. Comput. Chem. , vol.27 , pp. 1211-1219
    • Ferrari, E.S.1    Burton, R.C.2    Davey, R.J.3    Gavezzotti, A.4
  • 11
    • 26844573382 scopus 로고    scopus 로고
    • Surfaces of Alcohol-Water Mixtures Studied by Sum-Frequency Generation Vibrational Spectroscopy
    • Sung, J.; Park, K.; Kim, D. Surfaces of Alcohol-Water Mixtures Studied by Sum-Frequency Generation Vibrational Spectroscopy J. Phys. Chem. B 2005, 109, 18507-18514
    • (2005) J. Phys. Chem. B , vol.109 , pp. 18507-18514
    • Sung, J.1    Park, K.2    Kim, D.3
  • 12
    • 0038046319 scopus 로고    scopus 로고
    • Thermodynamic and IR spectroscopic studies of solutions with simultaneous association and solvation
    • Asprion, N.; Hasse, H.; Maurer, G. Thermodynamic and IR spectroscopic studies of solutions with simultaneous association and solvation Fluid Phase Equilib. 2003, 208, 23-51
    • (2003) Fluid Phase Equilib. , vol.208 , pp. 23-51
    • Asprion, N.1    Hasse, H.2    Maurer, G.3
  • 13
    • 36849117971 scopus 로고
    • Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes
    • Frank, H. S.; Evans, M. W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes J. Chem. Phys. 1945, 13, 507-532
    • (1945) J. Chem. Phys. , vol.13 , pp. 507-532
    • Frank, H.S.1    Evans, M.W.2
  • 14
    • 0037171737 scopus 로고    scopus 로고
    • Molecular segregation observed in a concentrated alcohol-water solution
    • Dixit, S.; Crain, J.; Poon, W. C. K.; Finney, J. L.; Soper, A. K. Molecular segregation observed in a concentrated alcohol-water solution Nature 2002, 416, 829-832
    • (2002) Nature , vol.416 , pp. 829-832
    • Dixit, S.1    Crain, J.2    Poon, W.C.K.3    Finney, J.L.4    Soper, A.K.5
  • 15
    • 1642292027 scopus 로고    scopus 로고
    • Molecular Structure of Alcohol-Water Mixtures
    • Guo, J.-H. Molecular Structure of Alcohol-Water Mixtures Phys. Rev. Lett. 2003, 91, 157401
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 157401
    • Guo, J.-H.1
  • 16
    • 7044262242 scopus 로고    scopus 로고
    • Methanol-water solutions: A bi-percolating liquid mixture
    • Dougan, L. Methanol-water solutions: A bi-percolating liquid mixture J. Chem. Phys. 2004, 121, 6456
    • (2004) J. Chem. Phys. , vol.121 , pp. 6456
    • Dougan, L.1
  • 17
    • 17444426103 scopus 로고    scopus 로고
    • Molecular Dynamics Study of Hydration in Ethanol-Water Mixtures Using a Polarizable Force Field
    • Noskov, S. Y.; Lamoureux, G.; Roux, B. Molecular Dynamics Study of Hydration in Ethanol-Water Mixtures Using a Polarizable Force Field J. Phys. Chem. B 2005, 109, 6705-6713
    • (2005) J. Phys. Chem. B , vol.109 , pp. 6705-6713
    • Noskov, S.Y.1    Lamoureux, G.2    Roux, B.3
  • 18
    • 16844363614 scopus 로고    scopus 로고
    • Clustering and microimmiscibility in alcohol-water mixtures: Evidence from molecular-dynamics simulations
    • Allison, S. K.; Fox, J. P.; Hargreaves, R.; Bates, S. P. Clustering and microimmiscibility in alcohol-water mixtures: Evidence from molecular-dynamics simulations Phys. Rev. B 2005, 71, 024201
    • (2005) Phys. Rev. B , vol.71 , pp. 024201
    • Allison, S.K.1    Fox, J.P.2    Hargreaves, R.3    Bates, S.P.4
  • 19
    • 33748769762 scopus 로고    scopus 로고
    • Methanol-Water Mixtures: A Microsolvation Study Using the Effective Fragment Potential Method
    • Adamovic, I.; Gordon, M. S. Methanol-Water Mixtures: A Microsolvation Study Using the Effective Fragment Potential Method J. Phys. Chem. A 2006, 110, 10267-10273
    • (2006) J. Phys. Chem. A , vol.110 , pp. 10267-10273
    • Adamovic, I.1    Gordon, M.S.2
  • 20
    • 0000217234 scopus 로고    scopus 로고
    • Structural Investigation of Solute-Solute Interactions in Aqueous Solutions of Tertiary Butanol
    • Bowron, D. T.; Finney, J. L.; Soper, A. K. Structural Investigation of Solute-Solute Interactions in Aqueous Solutions of Tertiary Butanol J. Phys. Chem. B 1998, 102, 3551-3563
    • (1998) J. Phys. Chem. B , vol.102 , pp. 3551-3563
    • Bowron, D.T.1    Finney, J.L.2    Soper, A.K.3
  • 21
    • 0035826443 scopus 로고    scopus 로고
    • Temperature dependence of the structure of a 0.06 mol fraction tertiary butanol-water solution
    • Bowron, D. T.; Soper, A. K.; Finney, J. L. Temperature dependence of the structure of a 0.06 mol fraction tertiary butanol-water solution J. Chem. Phys. 2001, 114, 6203
    • (2001) J. Chem. Phys. , vol.114 , pp. 6203
    • Bowron, D.T.1    Soper, A.K.2    Finney, J.L.3
  • 22
    • 0037158522 scopus 로고    scopus 로고
    • The structure of a concentrated aqueous solution of tertiary butanol: Water pockets and resulting perturbations
    • Bowron, D. T.; Moreno, S. D. The structure of a concentrated aqueous solution of tertiary butanol: Water pockets and resulting perturbations J. Chem. Phys. 2002, 117, 3753
    • (2002) J. Chem. Phys. , vol.117 , pp. 3753
    • Bowron, D.T.1    Moreno, S.D.2
  • 23
    • 18644366693 scopus 로고    scopus 로고
    • A new force field for atomistic simulations of aqueous tertiary butanol solutions
    • Lee, M. E.; van der Vegt, N. F. A. A new force field for atomistic simulations of aqueous tertiary butanol solutions J. Chem. Phys. 2005, 122, 114509
    • (2005) J. Chem. Phys. , vol.122 , pp. 114509
    • Lee, M.E.1    Van Der Vegt, N.F.A.2
  • 24
    • 34548786766 scopus 로고    scopus 로고
    • The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions
    • Gordon, M. S.; Slipchenko, L. V.; Li, H.; Jensen, J. H. The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions Ann. Rep. Comp. Chem. 2007, 3, 177-193
    • (2007) Ann. Rep. Comp. Chem. , vol.3 , pp. 177-193
    • Gordon, M.S.1    Slipchenko, L.V.2    Li, H.3    Jensen, J.H.4
  • 25
    • 78649830841 scopus 로고    scopus 로고
    • Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers
    • Ghosh, D. Noncovalent Interactions in Extended Systems Described by the Effective Fragment Potential Method: Theory and Application to Nucleobase Oligomers J. Phys. Chem. A 2010, 114, 12739-12754
    • (2010) J. Phys. Chem. A , vol.114 , pp. 12739-12754
    • Ghosh, D.1
  • 26
    • 0035138053 scopus 로고    scopus 로고
    • The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry
    • Gordon, M. S. The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry J. Phys. Chem. A 2001, 105, 293-307
    • (2001) J. Phys. Chem. A , vol.105 , pp. 293-307
    • Gordon, M.S.1
  • 27
    • 33846588840 scopus 로고    scopus 로고
    • Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimer
    • Slipchenko, L. V.; Gordon, M. S. Electrostatic energy in the effective fragment potential method: Theory and application to benzene dimer J. Comput. Chem. 2007, 28, 276-291
    • (2007) J. Comput. Chem. , vol.28 , pp. 276-291
    • Slipchenko, L.V.1    Gordon, M.S.2
  • 28
    • 79955851419 scopus 로고    scopus 로고
    • Benzene-Pyridine Interactions Predicted by the Effective Fragment Potential Method
    • Smith, Q. A.; Gordon, M. S.; Slipchenko, L. V. Benzene-Pyridine Interactions Predicted by the Effective Fragment Potential Method J. Phys. Chem. A 2011, 115, 4598-4609
    • (2011) J. Phys. Chem. A , vol.115 , pp. 4598-4609
    • Smith, Q.A.1    Gordon, M.S.2    Slipchenko, L.V.3
  • 29
    • 46349109795 scopus 로고    scopus 로고
    • Modeling π-π Interactions with the Effective Fragment Potential Method: The Benzene Dimer and Substituents
    • Smith, T.; Slipchenko, L. V.; Gordon, M. S. Modeling π-π Interactions with the Effective Fragment Potential Method: The Benzene Dimer and Substituents J. Phys. Chem. A 2008, 112, 5286-5294
    • (2008) J. Phys. Chem. A , vol.112 , pp. 5286-5294
    • Smith, T.1    Slipchenko, L.V.2    Gordon, M.S.3
  • 31
    • 63849190874 scopus 로고    scopus 로고
    • Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study
    • Slipchenko, L. V.; Gordon, M. S. Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study J. Phys. Chem. A 2009, 113, 2092-2102
    • (2009) J. Phys. Chem. A , vol.113 , pp. 2092-2102
    • Slipchenko, L.V.1    Gordon, M.S.2
  • 32
    • 84961983516 scopus 로고    scopus 로고
    • Alanine: Then There Was Water
    • Mullin, J. M.; Gordon, M. S. Alanine: Then There Was Water J. Phys. Chem. B 2009, 113, 8657-8669
    • (2009) J. Phys. Chem. B , vol.113 , pp. 8657-8669
    • Mullin, J.M.1    Gordon, M.S.2
  • 33
    • 84961979191 scopus 로고    scopus 로고
    • Water and Alanine: From Puddles(32) to Ponds(49)
    • Mullin, J. M.; Gordon, M. S. Water and Alanine: From Puddles(32) to Ponds(49) J. Phys. Chem. B 2009, 113, 14413-14420
    • (2009) J. Phys. Chem. B , vol.113 , pp. 14413-14420
    • Mullin, J.M.1    Gordon, M.S.2
  • 34
    • 4344679514 scopus 로고    scopus 로고
    • The effective fragment potential: Small clusters and radial distribution functions
    • Netzloff, H. M.; Gordon, M. S. The effective fragment potential: Small clusters and radial distribution functions J. Chem. Phys. 2004, 121, 2711
    • (2004) J. Chem. Phys. , vol.121 , pp. 2711
    • Netzloff, H.M.1    Gordon, M.S.2
  • 35
    • 85073165638 scopus 로고    scopus 로고
    • Coarse-Grained Intermolecular Potentials Derived from the Effective Fragment Potential: Application to Water, Benzene, and Carbon Tetrachloride
    • Springer: The Netherlands
    • Pranami, G.; Slipchenko, L.; Lamm, M. H.; Gordon, M. S. Coarse-Grained Intermolecular Potentials Derived From The Effective Fragment Potential: Application To Water, Benzene, and Carbon Tetrachloride. Multi-Scale Quantum Models for Biocatalysis; Springer: The Netherlands, 2009; pp 197-218.
    • (2009) Multi-Scale Quantum Models for Biocatalysis , pp. 197-218
    • Pranami, G.1    Slipchenko, L.2    Lamm, M.H.3    Gordon, M.S.4
  • 36
    • 0037961695 scopus 로고    scopus 로고
    • Density functional theory based effective fragment potential method
    • Adamovic, I.; Freitag, M. A.; Gordon, M. S. Density functional theory based effective fragment potential method J. Chem. Phys. 2003, 118, 6725
    • (2003) J. Chem. Phys. , vol.118 , pp. 6725
    • Adamovic, I.1    Freitag, M.A.2    Gordon, M.S.3
  • 37
    • 0000138517 scopus 로고    scopus 로고
    • An effective fragment method for modeling solvent effects in quantum mechanical calculations
    • Day, P. N. An effective fragment method for modeling solvent effects in quantum mechanical calculations J. Chem. Phys. 1996, 105, 1968
    • (1996) J. Chem. Phys. , vol.105 , pp. 1968
    • Day, P.N.1
  • 38
    • 0001475763 scopus 로고
    • Distributed multipole analysis, or how to describe a molecular charge distribution
    • Stone, A. J. Distributed multipole analysis, or how to describe a molecular charge distribution Chem. Phys. Lett. 1981, 83, 233-239
    • (1981) Chem. Phys. Lett. , vol.83 , pp. 233-239
    • Stone, A.J.1
  • 40
    • 0000194090 scopus 로고    scopus 로고
    • Evaluation of charge penetration between distributed multipolar expansions
    • Freitag, M. A.; Gordon, M. S.; Jensen, J. H.; Stevens, W. J. Evaluation of charge penetration between distributed multipolar expansions J. Chem. Phys. 2000, 112, 7300
    • (2000) J. Chem. Phys. , vol.112 , pp. 7300
    • Freitag, M.A.1    Gordon, M.S.2    Jensen, J.H.3    Stevens, W.J.4
  • 41
    • 68249153515 scopus 로고    scopus 로고
    • Damping functions in the effective fragment potential method
    • Slipchenko, L. V.; Gordon, M. S. Damping functions in the effective fragment potential method Mol. Phys. 2009, 107, 999
    • (2009) Mol. Phys. , vol.107 , pp. 999
    • Slipchenko, L.V.1    Gordon, M.S.2
  • 42
    • 33845312676 scopus 로고    scopus 로고
    • Gradients of the polarization energy in the effective fragment potential method
    • Li, H.; Netzloff, H. M.; Gordon, M. S. Gradients of the polarization energy in the effective fragment potential method J. Chem. Phys. 2006, 125, 194103
    • (2006) J. Chem. Phys. , vol.125 , pp. 194103
    • Li, H.1    Netzloff, H.M.2    Gordon, M.S.3
  • 43
    • 23444454124 scopus 로고    scopus 로고
    • Dynamic polarizability, dispersion coefficient C6 and dispersion energy in the effective fragment potential method
    • Adamovic, I.; Gordon, M. S. Dynamic polarizability, dispersion coefficient C6 and dispersion energy in the effective fragment potential method Mol. Phys. 2005, 103, 379
    • (2005) Mol. Phys. , vol.103 , pp. 379
    • Adamovic, I.1    Gordon, M.S.2
  • 44
    • 33845377133 scopus 로고
    • AB-initio prediction of properties of carbon dioxide, ammonia, and carbon dioxide.ammonia
    • Amos, R. D.; Handy, N. C.; Knowles, P. J.; Rice, J. E.; Stone, A. J. AB-initio prediction of properties of carbon dioxide, ammonia, and carbon dioxide...ammonia J. Phys. Chem. 1985, 89, 2186-2192
    • (1985) J. Phys. Chem. , vol.89 , pp. 2186-2192
    • Amos, R.D.1    Handy, N.C.2    Knowles, P.J.3    Rice, J.E.4    Stone, A.J.5
  • 45
    • 0000106210 scopus 로고    scopus 로고
    • An approximate formula for the intermolecular Pauli repulsion between closed shell molecules
    • Jensen, J. H.; Gordon, M. S. An approximate formula for the intermolecular Pauli repulsion between closed shell molecules Mol. Phys. 1996, 89, 1313-1325
    • (1996) Mol. Phys. , vol.89 , pp. 1313-1325
    • Jensen, J.H.1    Gordon, M.S.2
  • 46
    • 0000485819 scopus 로고    scopus 로고
    • An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method
    • Jensen, J. H.; Gordon, M. S. An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method J. Chem. Phys. 1998, 108, 4772
    • (1998) J. Chem. Phys. , vol.108 , pp. 4772
    • Jensen, J.H.1    Gordon, M.S.2
  • 47
    • 0004739802 scopus 로고    scopus 로고
    • Modeling intermolecular exchange integrals between nonorthogonal molecular orbitals
    • Jensen, J. H. Modeling intermolecular exchange integrals between nonorthogonal molecular orbitals J. Chem. Phys. 1996, 104, 7795
    • (1996) J. Chem. Phys. , vol.104 , pp. 7795
    • Jensen, J.H.1
  • 48
    • 84986468715 scopus 로고
    • Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F
    • Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F J. Comput. Chem. 1983, 4, 294-301
    • (1983) J. Comput. Chem. , vol.4 , pp. 294-301
    • Clark, T.1    Chandrasekhar, J.2    Spitznagel, G.W.3    Schleyer, P.V.R.4
  • 49
    • 33748545144 scopus 로고
    • The influence of polarization functions on molecular orbital hydrogenation energies
    • Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies Theor. Chim. Acta 1973, 28, 213-222
    • (1973) Theor. Chim. Acta , vol.28 , pp. 213-222
    • Hariharan, P.C.1    Pople, J.A.2
  • 50
    • 0347170005 scopus 로고
    • Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
    • Hehre, W. J. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules J. Chem. Phys. 1972, 56, 2257
    • (1972) J. Chem. Phys. , vol.56 , pp. 2257
    • Hehre, W.J.1
  • 51
    • 36549091139 scopus 로고
    • Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
    • Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets J. Chem. Phys. 1984, 80, 3265
    • (1984) J. Chem. Phys. , vol.80 , pp. 3265
    • Frisch, M.J.1    Pople, J.A.2    Binkley, J.S.3
  • 52
    • 26844534384 scopus 로고
    • Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
    • Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys. 1980, 72, 650
    • (1980) J. Chem. Phys. , vol.72 , pp. 650
    • Krishnan, R.1    Binkley, J.S.2    Seeger, R.3    Pople, J.A.4
  • 53
    • 4243943295 scopus 로고    scopus 로고
    • Generalized Gradient Approximation Made Simple
    • Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple Phys. Rev. Lett. 1996, 77, 3865
    • (1996) Phys. Rev. Lett. , vol.77 , pp. 3865
    • Perdew, J.P.1    Burke, K.2    Ernzerhof, M.3
  • 54
    • 4444282928 scopus 로고    scopus 로고
    • A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
    • Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6 J. Comput. Chem. 2004, 25, 1656-1676
    • (2004) J. Comput. Chem. , vol.25 , pp. 1656-1676
    • Oostenbrink, C.1    Villa, A.2    Mark, A.E.3    Van Gunsteren, W.F.4
  • 55
    • 46249092554 scopus 로고    scopus 로고
    • GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
    • Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation J. Chem. Theory Comput. 2008, 4, 435-447
    • (2008) J. Chem. Theory Comput. , vol.4 , pp. 435-447
    • Hess, B.1    Kutzner, C.2    Van Der Spoel, D.3    Lindahl, E.4
  • 56
    • 84893169025 scopus 로고
    • General atomic and molecular electronic structure system
    • Schmidt, M. W. General atomic and molecular electronic structure system J. Comput. Chem. 1993, 14, 1347-1363
    • (1993) J. Comput. Chem. , vol.14 , pp. 1347-1363
    • Schmidt, M.W.1
  • 59
    • 84943502952 scopus 로고
    • A molecular dynamics method for simulations in the canonical ensemble
    • Nosé, S. A molecular dynamics method for simulations in the canonical ensemble Mol. Phys. 1984, 52, 255
    • (1984) Mol. Phys. , vol.52 , pp. 255
    • Nosé, S.1
  • 60
    • 0001538909 scopus 로고
    • Canonical dynamics: Equilibrium phase-space distributions
    • Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions Phys. Rev. A 1985, 31, 1695
    • (1985) Phys. Rev. A , vol.31 , pp. 1695
    • Hoover, W.G.1
  • 61
    • 36449008607 scopus 로고
    • An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies
    • Klopper, W.; Schütz, M.; Lüthi, H. P.; Leutwyler, S. An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies J. Chem. Phys. 1995, 103, 1085
    • (1995) J. Chem. Phys. , vol.103 , pp. 1085
    • Klopper, W.1    Schütz, M.2    Lüthi, H.P.3    Leutwyler, S.4
  • 62
    • 0009758179 scopus 로고
    • Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond Interactions
    • Novoa, J. J.; Sosa, C. Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond Interactions J. Phys. Chem. 1995, 99, 15837-15845
    • (1995) J. Phys. Chem. , vol.99 , pp. 15837-15845
    • Novoa, J.J.1    Sosa, C.2
  • 64
    • 0031581977 scopus 로고    scopus 로고
    • MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking
    • Sponer, J.; Hobza, P. MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking Chem. Phys. Lett. 1997, 267, 263-270
    • (1997) Chem. Phys. Lett. , vol.267 , pp. 263-270
    • Sponer, J.1    Hobza, P.2
  • 65
    • 0342269968 scopus 로고
    • Convergence to the basis-set limit in ab initio calculations at the correlated level on the water dimer
    • van Duijneveldt-van de Rijdt, J. G. C. M.; van Duijneveldt, F. B. Convergence to the basis-set limit in ab initio calculations at the correlated level on the water dimer J. Chem. Phys. 1992, 97, 5019
    • (1992) J. Chem. Phys. , vol.97 , pp. 5019
    • Van Duijneveldt-Van De Rijdt, J.G.C.M.1    Van Duijneveldt, F.B.2
  • 66
    • 33744470857 scopus 로고    scopus 로고
    • Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
    • Jurečka, P.; Šponer, J.; Černý, J.; Hobza, P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs Phys. Chem. Chem. Phys. 2006, 8, 1985
    • (2006) Phys. Chem. Chem. Phys. , vol.8 , pp. 1985
    • Jurečka, P.1    Šponer, J.2    Černý, J.3    Hobza, P.4
  • 67
    • 0037943839 scopus 로고
    • Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer
    • Stevens, W. J.; Fink, W. H. Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer Chem. Phys. Lett. 1987, 139, 15-22
    • (1987) Chem. Phys. Lett. , vol.139 , pp. 15-22
    • Stevens, W.J.1    Fink, W.H.2
  • 69
    • 34548729444 scopus 로고    scopus 로고
    • Toward a Separate Reproduction of the Contributions to the Hartree-Fock and DFT Intermolecular Interaction Energies by Polarizable Molecular Mechanics with the SIBFA Potential
    • Piquemal, J.-P.; Chevreau, H.; Gresh, N. Toward a Separate Reproduction of the Contributions to the Hartree-Fock and DFT Intermolecular Interaction Energies by Polarizable Molecular Mechanics with the SIBFA Potential J. Chem. Theory Comput. 2007, 3, 824-837
    • (2007) J. Chem. Theory Comput. , vol.3 , pp. 824-837
    • Piquemal, J.-P.1    Chevreau, H.2    Gresh, N.3
  • 70
    • 0031273653 scopus 로고    scopus 로고
    • Model, Multiply Hydrogen-Bonded Water Oligomers (N = 3-20). How Closely Can a Separable, ab Initio-Grounded Molecular Mechanics Procedure Reproduce the Results of Supermolecule Quantum Chemical Computations?
    • Gresh, N. Model, Multiply Hydrogen-Bonded Water Oligomers (N = 3-20). How Closely Can a Separable, ab Initio-Grounded Molecular Mechanics Procedure Reproduce the Results of Supermolecule Quantum Chemical Computations? J. Phys. Chem. A 1997, 101, 8680-8694
    • (1997) J. Phys. Chem. A , vol.101 , pp. 8680-8694
    • Gresh, N.1
  • 71
    • 34548575315 scopus 로고    scopus 로고
    • Key Role of the Polarization Anisotropy of Water in Modeling Classical Polarizable Force Fields
    • Piquemal, J.-P.; Chelli, R.; Procacci, P.; Gresh, N. Key Role of the Polarization Anisotropy of Water in Modeling Classical Polarizable Force Fields J. Phys. Chem. A 2007, 111, 8170-8176
    • (2007) J. Phys. Chem. A , vol.111 , pp. 8170-8176
    • Piquemal, J.-P.1    Chelli, R.2    Procacci, P.3    Gresh, N.4
  • 72
    • 0001734664 scopus 로고    scopus 로고
    • A chemical potential equalization method for molecular simulations
    • York, D. M.; Yang, W. A chemical potential equalization method for molecular simulations J. Chem. Phys. 1996, 104, 159-172
    • (1996) J. Chem. Phys. , vol.104 , pp. 159-172
    • York, D.M.1    Yang, W.2
  • 73
    • 0034316640 scopus 로고    scopus 로고
    • What can x-ray scattering tell us about the radial distribution functions of water?
    • Sorenson, J. M.; Hura, G.; Glaeser, R. M.; Head-Gordon, T. What can x-ray scattering tell us about the radial distribution functions of water? J. Chem. Phys. 2000, 113, 9149-9161
    • (2000) J. Chem. Phys. , vol.113 , pp. 9149-9161
    • Sorenson, J.M.1    Hura, G.2    Glaeser, R.M.3    Head-Gordon, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.