메뉴 건너뛰기




Volumn 8, Issue 4, 2008, Pages 1381-1391

A distributed PSO-SVM hybrid system with feature selection and parameter optimization

Author keywords

Data mining; Distributed computing; Feature selection; Particle swarm optimization; Support vector machines; Web service

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER SYSTEMS; DATA MINING; DECISION SUPPORT SYSTEMS; FACE RECOGNITION; INFORMATION MANAGEMENT; INFORMATION SERVICES; OPTIMIZATION; SEARCH ENGINES; STRUCTURAL OPTIMIZATION; SUPPORT VECTOR MACHINES; TECHNOLOGY;

EID: 50149108380     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2007.10.007     Document Type: Article
Times cited : (531)

References (36)
  • 3
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based attribute selection and parameter optimization for support vector machine
    • Huang C.-L., and Wang C.-J. A GA-based attribute selection and parameter optimization for support vector machine. Expert Syst. Appl. 31 2 (2006) 231-240
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 5
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machine
    • Hsu C.W., and Lin C.J. A simple decomposition method for support vector machine. Mach. Learn. 46 1-3 (2002) 219-314
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 219-314
    • Hsu, C.W.1    Lin, C.J.2
  • 8
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • van den Bergh F., and Engelbrecht A.P. A study of particle swarm optimization particle trajectories. Inf. Sci. 176 8 (2006) 937-971
    • (2006) Inf. Sci. , vol.176 , Issue.8 , pp. 937-971
    • van den Bergh, F.1    Engelbrecht, A.P.2
  • 9
    • 12444314024 scopus 로고    scopus 로고
    • A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization
    • Jiang C.-W., and Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization. Math. Comput. Simul. 68 1 (2005) 57-65
    • (2005) Math. Comput. Simul. , vol.68 , Issue.1 , pp. 57-65
    • Jiang, C.-W.1    Etorre, B.2
  • 10
    • 14644420283 scopus 로고    scopus 로고
    • Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization
    • Du F., Shi W., Chen L., Deng Y., and Zhu Z. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization. Pattern Recogn. Lett. 26 5 (2005) 597-603
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.5 , pp. 597-603
    • Du, F.1    Shi, W.2    Chen, L.3    Deng, Y.4    Zhu, Z.5
  • 11
    • 33645213044 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems
    • Yin P.-Y., Yu S.-S., Wang P.-P., and Wang Y.-T. A hybrid particle swarm optimization algorithm for optimal task assignment in distributed systems. Comput. Stand. Interfaces 28 4 (2006) 441-450
    • (2006) Comput. Stand. Interfaces , vol.28 , Issue.4 , pp. 441-450
    • Yin, P.-Y.1    Yu, S.-S.2    Wang, P.-P.3    Wang, Y.-T.4
  • 12
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • Da Y., and Xiurun G. An improved PSO-based ANN with simulated annealing technique. Neurocomputing 63 (2005) 527-533
    • (2005) Neurocomputing , vol.63 , pp. 527-533
    • Da, Y.1    Xiurun, G.2
  • 13
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
    • Chatterjee A., and Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Operations Res. 33 3 (2006) 859-871
    • (2006) Comput. Operations Res. , vol.33 , Issue.3 , pp. 859-871
    • Chatterjee, A.1    Siarry, P.2
  • 15
    • 27144557504 scopus 로고    scopus 로고
    • A PSO and a tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application
    • Allahverdi A., and Al-Anzi F.S. A PSO and a tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application. Comput. Operations Res. 33 4 (2006) 1056-1080
    • (2006) Comput. Operations Res. , vol.33 , Issue.4 , pp. 1056-1080
    • Allahverdi, A.1    Al-Anzi, F.S.2
  • 16
    • 33644897888 scopus 로고    scopus 로고
    • A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan
    • Lian Z., Gu X., and Jiao B. A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan. Appl. Math. Comput. 175 1 (2006) 773-785
    • (2006) Appl. Math. Comput. , vol.175 , Issue.1 , pp. 773-785
    • Lian, Z.1    Gu, X.2    Jiao, B.3
  • 17
    • 3142781923 scopus 로고    scopus 로고
    • The informed particle swarm: simpler, maybe better
    • Mendes R., Kennedy J., and Neves J. The informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8 3 (2004) 204-210
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 23
    • 0003250435 scopus 로고
    • Single-layer learning revisited: a stepwise procedure for building and training a neural network
    • Fogelman J. (Ed), Springer-Verlag
    • Knerr S., Personnaz L., and Dreyfus G. Single-layer learning revisited: a stepwise procedure for building and training a neural network. In: Fogelman J. (Ed). Neurocomputing: Algorithms, Architectures and Application (1990), Springer-Verlag
    • (1990) Neurocomputing: Algorithms, Architectures and Application
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 28
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • Agrafiotis D.K., and Cedeno W. Feature selection for structure-activity correlation using binary particle swarms. J. Med. Chem. 45 5 (2002) 1098-1107
    • (2002) J. Med. Chem. , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 29
    • 50149114710 scopus 로고    scopus 로고
    • C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, available at: http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf, 2003.
    • C.W. Hsu, C.C. Chang, C.J. Lin, A practical guide to support vector classification, available at: http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf, 2003.
  • 30
    • 50149100356 scopus 로고    scopus 로고
    • H.T. Lin, C.J. Lin, A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, available at: http://www.csie.ntu.edu.tw/∼cjlin/papers/tanh.pdf, 2003.
    • H.T. Lin, C.J. Lin, A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, available at: http://www.csie.ntu.edu.tw/∼cjlin/papers/tanh.pdf, 2003.
  • 31
  • 32
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1 (1997) 317-327
    • (1997) Data Min. Knowl. Discov. , vol.1 , pp. 317-327
    • Salzberg, S.L.1
  • 33
    • 50149099781 scopus 로고    scopus 로고
    • C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.
    • C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.
  • 35
    • 50149089161 scopus 로고    scopus 로고
    • P.M. Murphy, D.W. Aha, UCI Repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA, http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2001.
    • P.M. Murphy, D.W. Aha, UCI Repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA, http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2001.
  • 36
    • 16244405300 scopus 로고    scopus 로고
    • Building credit scoring models using genetic programming
    • Ong C.-S., Huang J.-J., and Tzeng G.-H. Building credit scoring models using genetic programming. Expert Syst. Appl. 29 1 (2005) 41-47
    • (2005) Expert Syst. Appl. , vol.29 , Issue.1 , pp. 41-47
    • Ong, C.-S.1    Huang, J.-J.2    Tzeng, G.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.