메뉴 건너뛰기




Volumn 3, Issue , 2013, Pages

Physicochemical insight into gap openings in graphene

Author keywords

[No Author keywords available]

Indexed keywords

CARBON NANOTUBE; GRAPHITE; QUANTUM DOT;

EID: 84875775731     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep01524     Document Type: Article
Times cited : (50)

References (59)
  • 1
    • 84855486667 scopus 로고    scopus 로고
    • Long-wavelength local density of states oscillations near graphene step edges
    • Xue, J. M. et al. Long-wavelength local density of states oscillations near graphene step edges. Phys. Rev. Lett. 108 (2012).
    • (2012) Phys. Rev. Lett , vol.108
    • Xue, J.M.1
  • 2
    • 60949104104 scopus 로고    scopus 로고
    • The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
    • Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235-242 (2009).
    • (2009) Nat. Mater , vol.8 , pp. 235-242
    • Ritter, K.A.1    Lyding, J.W.2
  • 3
    • 78649935320 scopus 로고    scopus 로고
    • High-On/Off-Ratio Graphene Nanoconstriction Field-Effect Transistor
    • Lu, Y. et al. High-On/Off-Ratio Graphene Nanoconstriction Field-Effect Transistor. Small 6, 2748-2754 (2010).
    • (2010) Small , vol.6 , pp. 2748-2754
    • Lu, Y.1
  • 4
    • 84866739317 scopus 로고    scopus 로고
    • Graphene field-effect transistors as room-temperature terahertz detectors
    • Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865-871 (2012).
    • (2012) Nat. Mater , vol.11 , pp. 865-871
    • Vicarelli, L.1
  • 5
    • 75749099710 scopus 로고    scopus 로고
    • Sandwiched Graphene-Membrane Superstructures
    • Titov, A. V., Kral, P. & Pearson, R. Sandwiched Graphene-Membrane Superstructures. ACS Nano 4, 229-234 (2010).
    • (2010) ACS Nano , vol.4 , pp. 229-234
    • Titov, A.V.1    Kral, P.2    Pearson, R.3
  • 6
    • 84860118035 scopus 로고    scopus 로고
    • Graphene Interfaced with Biological Cells: Opportunities and Challenges
    • Nguyen, P. & Berry, V. Graphene Interfaced with Biological Cells: Opportunities and Challenges. J. Phys. Chem. lett. 3, 1024-1029 (2012).
    • (2012) J. Phys. Chem. Lett , vol.3 , pp. 1024-1029
    • Nguyen, P.1    Berry, V.2
  • 7
    • 61649093984 scopus 로고    scopus 로고
    • Graphene-based single-bacterium resolution biodeviceDNA Transistor:Interfacing graphene derivatives with nanoscale and microscale biocomponents
    • Mohanty, N. & Berry, V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett. 8, 4469-4476 (2008).
    • (2008) Nano Lett , vol.8 , pp. 4469-4476
    • Mohanty, N.1    Berry, V.2
  • 8
    • 77956214759 scopus 로고    scopus 로고
    • Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O-3
    • Hong, X. et al. Unusual resistance hysteresis in n-layer graphene field effect transistors fabricated on ferroelectric Pb(Zr0.2Ti0.8)O-3. Appl. Phys. Lett. 97 (2010).
    • (2010) Appl. Phys. Lett , vol.97
    • Hong, X.1
  • 9
    • 77953489823 scopus 로고    scopus 로고
    • Mechanism for current saturation and energy dissipation in graphene transistors
    • DaSilva, A. M., Zou, K., Jain, J. K.&Zhu, J.Mechanism for Current Saturation and Energy Dissipation in Graphene Transistors. Phys. Rev. Lett. 104 (2010).
    • (2010) Phys. Rev. Lett , vol.104
    • Dasilva, A.M.1    Zou, K.2    Jain, J.K.3    Zhu, J.4
  • 10
    • 84863302794 scopus 로고    scopus 로고
    • Light-matter interaction in a microcavity-controlled graphene transistor
    • Engel, M. et al. Light-matter interaction in a microcavity-controlled graphene transistor. Nat Commun 3 (2012).
    • (2012) Nat Commun , vol.3
    • Engel, M.1
  • 11
    • 84860492111 scopus 로고    scopus 로고
    • Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
    • Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382-386 (2012).
    • (2012) Nat. Phys , vol.8 , pp. 382-386
    • Yankowitz, M.1
  • 12
    • 57949116154 scopus 로고    scopus 로고
    • Dominance of Broken Bonds and Unpaired Nonbonding pi-Electrons in the Band Gap Expansion and Edge StatesGeneration in Graphene Nanoribbons
    • Sun, C. Q., Fu, S. Y. & Nie, Y. G. Dominance of Broken Bonds and Unpaired Nonbonding pi-Electrons in the Band Gap Expansion and Edge StatesGeneration in Graphene Nanoribbons. J. Phys. Chem. C 112, 18927-18934 (2008).
    • (2008) J. Phys. Chem C , vol.112 , pp. 18927-18934
    • Sun, C.Q.1    Fu, S.Y.2    Nie, Y.G.3
  • 13
    • 33846361065 scopus 로고    scopus 로고
    • Electronic structure and stability of semiconducting graphene nanoribbons
    • DOI 10.1021/nl0617033
    • Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748-2754 (2006). (Pubitemid 46129565)
    • (2006) Nano Letters , vol.6 , Issue.12 , pp. 2748-2754
    • Barone, V.1    Hod, O.2    Scuseria, G.E.3
  • 14
    • 77950519205 scopus 로고    scopus 로고
    • Production properties and potential of graphene
    • Soldano, C.,Mahmood, A. & Dujardin, E. Production, properties and potential of graphene. Carbon 48, 2127-2150 (2010).
    • (2010) Carbon , vol.48 , pp. 2127-2150
    • Soldano, C.1    Mahmood, A.2    Dujardin, E.3
  • 15
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • DOI 10.1126/science.1150878
    • Li, X. et al. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 319, 1229-1232 (2008). (Pubitemid 351323015)
    • (2008) Science , vol.319 , Issue.5867 , pp. 1229-1232
    • Li, X.1    Wang, X.2    Zhang, L.3    Lee, S.4    Dai, H.5
  • 16
    • 44149119344 scopus 로고    scopus 로고
    • Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    • Wang, X. et al. Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors. Phys. Rev. Lett. 100, 206803 (2008).
    • (2008) Phys. Rev. Lett , vol.100 , pp. 206803
    • Wang, X.1
  • 17
    • 77949451837 scopus 로고    scopus 로고
    • Graphene single-electron transistors
    • Ihn, T. et al. Graphene single-electron transistors. Mater. Today 13, 44-50 (2010).
    • (2010) Mater. Today , vol.13 , pp. 44-50
    • Ihn, T.1
  • 18
    • 0000781318 scopus 로고    scopus 로고
    • Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
    • Nakada, K., Fujita, M.,Dresselhaus, G.&Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954-17961 (1996).
    • (1996) Phys. Rev. B , vol.54 , pp. 17954-17961
    • Nakada, K.1    Fujita, M.2    Dresselhaus, G.3    Dresselhaus, M.S.4
  • 19
    • 77952326182 scopus 로고    scopus 로고
    • Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics
    • Yan, X., Cui, X., Li, B. S. & Li, L. S. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett. 10, 1869-1873 (2010).
    • (2010) Nano Lett , vol.10 , pp. 1869-1873
    • Yan, X.1    Cui, X.2    Li, B.S.3    Large, S.L.L.4
  • 20
    • 77951668526 scopus 로고    scopus 로고
    • Synthesis of large stable colloidal graphene quantum dots with tunable size
    • Yan, X., Cui, X. & Li, L. S. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 132, 5944 (2010).
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 5944
    • Yan, X.1    Cui, X.2    Li, L.S.3
  • 21
    • 66449113901 scopus 로고    scopus 로고
    • Rational fabrication of graphene nanoribbons using a nanowire Etch mask
    • Bai, J. W.,Duan, X. F.&Huang, Y. Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask. Nano Lett. 9, 2083-2087 (2009).
    • (2009) Nano Lett , vol.9 , pp. 2083-2087
    • Bai, J.W.1    Duan, X.F.2    Huang, Y.3
  • 22
    • 35348815666 scopus 로고    scopus 로고
    • Coulomb blockade in graphene nanoribbons
    • Sols, F., Guinea, F.&Neto, A. H. C. Coulomb Blockade in Graphene Nanoribbons. Phys. Rev. Lett. 99, 166803 (2007).
    • (2007) Phys. Rev. Lett , vol.99 , pp. 166803
    • Sols, F.1    Guinea, F.2    Neto, A.H.C.3
  • 23
    • 76849101825 scopus 로고    scopus 로고
    • Energy and transport gaps in etched graphene nanoribbons
    • Molitor, F. et al. Energy and transport gaps in etched graphene nanoribbons. Semicond. Sci. Technol. 25, 034002 (2010).
    • (2010) Semicond. Sci. Technol , vol.25 , pp. 034002
    • Molitor, F.1
  • 24
    • 77955340828 scopus 로고    scopus 로고
    • Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography
    • Liang, X. et al. Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10 nm Ribbon Width Fabricated via Nanoimprint Lithography. Nano Lett. 10, 2454-2460 (2010).
    • (2010) Nano Lett , vol.10 , pp. 2454-2460
    • Liang, X.1
  • 25
    • 77749323301 scopus 로고    scopus 로고
    • Graphene nanomesh
    • Bai, J. et al. Graphene nanomesh. Nat. Nanotechnol. 5, 190-194 (2010).
    • (2010) Nat. Nanotechnol , vol.5 , pp. 190-194
    • Bai, J.1
  • 26
    • 70350680476 scopus 로고    scopus 로고
    • Electrostatic confinement of electrons in graphene nanoribbons
    • Liu, X., Oostinga, J. B., Morpurgo, A. F. & Vandersypen, L. M. K. Electrostatic confinement of electrons in graphene nanoribbons. Phys. Rev. B 80, 121407 (2009).
    • (2009) Phys. Rev B , vol.80 , pp. 121407
    • Liu, X.1    Oostinga, J.B.2    Morpurgo, A.F.3    Vandersypen, L.M.K.4
  • 27
    • 60749124436 scopus 로고    scopus 로고
    • Quantum dot behavior in graphene nanoconstrictions
    • Todd, K., Chou, H.-T., Amasha, S. & Goldhaber-Gordon, D. Quantum Dot Behavior in Graphene Nanoconstrictions. Nano Lett. 9, 416-421 (2008).
    • (2008) Nano Lett , vol.9 , pp. 416-421
    • Todd, K.1    Chou, H.-T.2    Amasha, S.3    Goldhaber-Gordon, D.4
  • 28
    • 34548052241 scopus 로고    scopus 로고
    • Effect of edge roughness in graphene nanoribbon transistors
    • Yoon, Y. & Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007).
    • (2007) Appl. Phys. Lett , vol.91 , pp. 073103
    • Yoon, Y.1    Guo, J.2
  • 29
    • 33751348065 scopus 로고    scopus 로고
    • Energy Gaps in Graphene Nanoribbons
    • Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).
    • (2006) Phys. Rev. Lett , vol.97 , pp. 216803
    • Son, Y.-W.1    Cohen, M.L.2    Louie, S.G.3
  • 30
    • 45149118399 scopus 로고    scopus 로고
    • Zigzag graphene nanoribbons with saturated edges
    • Kudin, K. N. Zigzag graphene nanoribbons with saturated edges. ACS Nano 2, 516-522 (2008).
    • (2008) ACS Nano , vol.2 , pp. 516-522
    • Kudin, K.N.1
  • 31
    • 42649127389 scopus 로고    scopus 로고
    • Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties
    • Cervantes-Sodi, F., Csanyi, G., Piscanec, S. & Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 77, 165427 (2008).
    • (2008) Phys. Rev B , vol.77 , pp. 165427
    • Cervantes-Sodi, F.1    Csanyi, G.2    Piscanec, S.3    Ferrari, A.C.4
  • 32
    • 77954905132 scopus 로고    scopus 로고
    • Etching and narrowing of graphene from the edges
    • Wang, X. R. & Dai, H. J. Etching and narrowing of graphene from the edges. Nat. Chem. 2, 661-665 (2010).
    • (2010) Nat. Chem , vol.2 , pp. 661-665
    • Wang, X.R.1    Dai, H.J.2
  • 34
    • 65249133533 scopus 로고    scopus 로고
    • Narrow graphene nanoribbons from carbon nanotubes
    • Jiao, L. Y. et al. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880 (2009).
    • (2009) Nature , vol.458 , pp. 877-880
    • Jiao, L.Y.1
  • 35
    • 84862007272 scopus 로고    scopus 로고
    • Theoretical approaches to graphene and graphene-based materials
    • Zhang, T., Xue, Q. Z., Zhang, S. & Dong, M. D. Theoretical approaches to graphene and graphene-based materials. Nano Today 7, 180-200 (2012).
    • (2012) Nano Today , vol.7 , pp. 180-200
    • Zhang, T.1    Xue, Q.Z.2    Zhang, S.3    Dong, M.D.4
  • 36
    • 77957987734 scopus 로고    scopus 로고
    • Graphene nanoflakes: Thermal stability infrared signatures, and potential applications in the field of spintronics and optical nanodevices
    • Silva, A. M. et al. Graphene Nanoflakes: Thermal Stability, Infrared Signatures, and Potential Applications in the Field of Spintronics and Optical Nanodevices. J. Phys. Chem. C 114, 17472-17485 (2010).
    • (2010) J. Phys. Chem C , vol.114 , pp. 17472-17485
    • Silva, A.M.1
  • 37
    • 33144487433 scopus 로고    scopus 로고
    • Peculiar width dependence of the electronic properties of carbon nanoribbons
    • Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006).
    • (2006) Phys. Rev B , vol.73 , pp. 045432
    • Ezawa, M.1
  • 38
    • 84860202154 scopus 로고    scopus 로고
    • Electronic structures of porous nanocarbons
    • Baskin, A. & Kral, P. Electronic structures of porous nanocarbons. Sci. Rep. 1, 36 (2011).
    • (2011) Sci. Rep , vol.1 , pp. 36
    • Baskin, A.1    Kral, P.2
  • 39
    • 77956819833 scopus 로고    scopus 로고
    • Electronic Structure and Chemical Modification of Graphene Antidot Lattices
    • Ouyang, F. P. et al. Electronic Structure and Chemical Modification of Graphene Antidot Lattices. J. Phys. Chem. C 114, 15578-15583 (2010).
    • (2010) J. Phys. Chem C , vol.114 , pp. 15578-15583
    • Ouyang, F.P.1
  • 40
    • 79960005826 scopus 로고    scopus 로고
    • Clar sextet analysis of triangular rectangular, and honeycomb graphene antidot lattices
    • Petersen, R., Pedersen, T. G. & Jauho, A. P. Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices. ACS Nano 5, 523-529 (2011).
    • (2011) ACS Nano , vol.5 , pp. 523-529
    • Petersen, R.1    Pedersen, T.G.2    Jauho, A.P.3
  • 41
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • Han, M. Y.,Ozyilmaz, B., Zhang, Y. B. &Kim, P. Energy Band-Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
    • (2007) Phys. Rev. Lett , vol.98 , pp. 206805
    • Han, Y.1    Ozyilmaz M, B.2    Zhang, Y.B.3    Kim, P.4
  • 42
    • 0033908185 scopus 로고    scopus 로고
    • Nanostructured materials: basic concepts and microstructure
    • DOI 10.1016/S1359-6454(99)00285-2
    • Gleiter, H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1-29 (2000). (Pubitemid 30558393)
    • (2000) Acta Materialia , vol.48 , Issue.1 , pp. 1-29
    • Gleiter, H.1
  • 43
    • 58049111861 scopus 로고    scopus 로고
    • Thermo-mechanical behavior of low-dimensional systems: The local bond average approach
    • Sun, C. Thermo-mechanical behavior of low-dimensional systems: The local bond average approach. Prog. Mater. Sci. 54, 179-307 (2009).
    • (2009) Prog. Mater. Sci , vol.54 , pp. 179-307
    • Sun, C.1
  • 45
    • 44249091206 scopus 로고    scopus 로고
    • The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys
    • DOI 10.1002/adfm.200700857
    • Zhu, Y. F., Lang, X. Y. & Jiang, Q. The Effect of Alloying on the Bandgap Energy of Nanoscaled Semiconductor Alloys. Adv. Funct. Mater. 18, 1422-1429 (2008). (Pubitemid 351725104)
    • (2008) Advanced Functional Materials , vol.18 , Issue.9 , pp. 1422-1429
    • Zhu, Y.F.1    Lang, X.Y.2    Jiang, Q.3
  • 46
    • 69249161818 scopus 로고    scopus 로고
    • Universal scaling of semiconductor nanowires bandgap
    • Li, S. &Yang,G.W. Universal scaling of semiconductor nanowires bandgap. Appl. Phys. Lett. 95 (2009).
    • (2009) Appl. Phys. Lett , vol.95
    • Li, S.1    Yang, G.W.2
  • 47
    • 52949131848 scopus 로고    scopus 로고
    • Size dependent interface energy and its applications
    • Jiang, Q. & Lu, H. M. Size dependent interface energy and its applications. Surf. Sci. Rep. 63, 427-464 (2008).
    • (2008) Surf. Sci. Rep , vol.63 , pp. 427-464
    • Jiang, Q.1    Lu, H.M.2
  • 48
    • 70349084569 scopus 로고    scopus 로고
    • Surface energy of nanostructural materials with negative curvature and related size effects
    • Ouyang, G., Wang, C. X. & Yang, G. W. Surface Energy of Nanostructural Materials with Negative Curvature and Related Size Effects. Chem. Rev. 109, 4221-4247 (2009).
    • (2009) Chem. Rev , vol.109 , pp. 4221-4247
    • Ouyang, G.1    Wang, C.X.2    Yang, G.W.3
  • 49
    • 0000102019 scopus 로고    scopus 로고
    • Melting thermodynamics of organic nanocrystals
    • Jiang, Q., Shi, H. X. & Zhao, M. Melting thermodynamics of organic nanocrystals. J. Chem. Phys. 111, 2176-2180 (1999). (Pubitemid 129576296)
    • (1999) Journal of Chemical Physics , vol.111 , Issue.5 , pp. 2176-2180
    • Jiang, Q.1    Shi, H.X.2    Zhao, M.3
  • 50
    • 0042632479 scopus 로고    scopus 로고
    • Size-dependent melting point of noble metals
    • Jiang, Q., Zhang, S. & Zhao, M. Size-dependent melting point of noble metals. Mater. Chem. Phys. 82, 225-227 (2003).
    • (2003) Mater. Chem. Phys , vol.82 , pp. 225-227
    • Jiang, Q.1    Zhang, S.2    Zhao, M.3
  • 51
    • 79960683092 scopus 로고    scopus 로고
    • Nature of graphene edges: A review
    • Acik, M. & Chabal, Y. J. Nature of Graphene Edges: A Review. Jpn. J. Appl. Phys. 50, 070101 (2011).
    • (2011) Jpn. J. Appl. Phys , vol.50 , pp. 070101
    • Acik, M.1    Chabal, Y.J.2
  • 52
    • 4244118539 scopus 로고    scopus 로고
    • Effects of finite length on the electronic structure of carbon nanotubes
    • Rochefort, A., Salahub, D. R. & Avouris, P. Effects of Finite Length on the Electronic Structure of Carbon Nanotubes. J. Phys. Chem. B 103, 641-646 (1999). (Pubitemid 129680402)
    • (1999) Journal of Physical Chemistry B , vol.103 , Issue.4 , pp. 641-646
    • Rochefort, A.1    Salahub, D.R.2    Avouris, P.3
  • 53
    • 67149116648 scopus 로고    scopus 로고
    • Atomistic origin and pressure dependence of band gap variation in semiconductor nanocrystals
    • Ouyang, G., Sun, C. Q. & Zhu, W. G. Atomistic Origin and Pressure Dependence of Band Gap Variation in Semiconductor Nanocrystals. J. Phys. Chem. C 113, 9516-9519 (2009).
    • (2009) J. Phys. Chem C , vol.113 , pp. 9516-9519
    • Ouyang, G.1    Sun, C.Q.2    Zhu, W.G.3
  • 54
    • 77951053478 scopus 로고    scopus 로고
    • Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials
    • Kim, M. et al. Fabrication and Characterization of Large-Area, Semiconducting Nanoperforated Graphene Materials. Nano Lett. 10, 1125-1131 (2010).
    • (2010) Nano Lett , vol.10 , pp. 1125-1131
    • Kim, M.1
  • 55
    • 84872056164 scopus 로고    scopus 로고
    • Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures
    • Nguyen, V. H., Nguyen, M. C., Nguyen, H.-V. & Dollfus, P. Disorder effects on electronic bandgap and transport in graphene-nanomesh-based structures. J. Appl. Phys. 113, 013702-013709 (2013).
    • (2013) J. Appl. Phys , vol.113 , pp. 013702-013709
    • Nguyen, V.H.1    Nguyen, M.C.2    Nguyen, H.-V.3    Dollfus, P.4
  • 56
    • 51749099351 scopus 로고    scopus 로고
    • Self-Passivating edge reconstructions of graphene
    • Koskinen, P., Malola, S. & Ha?kinen, H. Self-Passivating Edge Reconstructions of Graphene. Phys. Rev. Lett. 101, 115502 (2008).
    • (2008) Phys. Rev. Lett , vol.101 , pp. 115502
    • Koskinen, P.1    Malola, S.2    Hakinen, H.3
  • 58
    • 0001327313 scopus 로고
    • Melting of graphite at very high pressure
    • Bundy, F. P. Melting of Graphite at Very High Pressure. J. Chem. Phys. 38, 618-630 (1963).
    • (1963) J. Chem. Phys , vol.38 , pp. 618-630
    • Bundy, F.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.