-
1
-
-
34547635051
-
-
Tombros, N.; Jozsa, C; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Nature 2007, 448, 571-574.
-
(2007)
Nature
, vol.448
, pp. 571-574
-
-
Tombros, N.1
Jozsa, C.2
Popinciuc, M.3
Jonkman, H.T.4
van Wees, B.J.5
-
2
-
-
52349097272
-
-
Booth, T. J.; Blake, P.; Nair, R. R.; Jiang, D.; Hill, E. W.; Bangert, U.; Bleloch, A.; Gass, M.; Novoselov, K.; Katsnelson, M. I.; Geim, A. K. Nano Lett. 2008, 8, 2442-2446.
-
(2008)
Nano Lett
, vol.8
, pp. 2442-2446
-
-
Booth, T.J.1
Blake, P.2
Nair, R.R.3
Jiang, D.4
Hill, E.W.5
Bangert, U.6
Bleloch, A.7
Gass, M.8
Novoselov, K.9
Katsnelson, M.I.10
Geim, A.K.11
-
3
-
-
43049170468
-
-
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. SolidState Commun. 2008, 146, 351-355.
-
(2008)
SolidState Commun
, vol.146
, pp. 351-355
-
-
Bolotin, K.I.1
Sikes, K.J.2
Jiang, Z.3
Klima, M.4
Fudenberg, G.5
Hone, J.6
Kim, P.7
Stormer, H.L.8
-
4
-
-
34547334459
-
-
Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Phys. Reυ. Lett. 2007, 98, 206805.
-
(2007)
Phys. Reυ. Lett
, vol.98
, pp. 206805
-
-
Han, M.Y.1
Özyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
5
-
-
36048991480
-
-
Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Physica E 2007, 40, 228-232.
-
(2007)
Physica E
, vol.40
, pp. 228-232
-
-
Chen, Z.H.1
Lin, Y.M.2
Rooks, M.J.3
Avouris, P.4
-
6
-
-
40049093097
-
-
Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Science 2008, 319,1229-1232.
-
(2008)
Science
, vol.319
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
7
-
-
33751348065
-
-
Son, Y.-W.; Cohen, M. L.; Louie, S. G. Phys. Reυ. Lett. 2006, 97, 216803.
-
(2006)
Phys. Reυ. Lett
, vol.97
, pp. 216803
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
9
-
-
35948971778
-
-
Yang, L.; Park, C.-H.; Son, Y.-W.; Cohen, M. L.; Louie, S. G. Phys. Reυ. Lett. 2007, 99, 186801.
-
(2007)
Phys. Reυ. Lett
, vol.99
, pp. 186801
-
-
Yang, L.1
Park, C.-H.2
Son, Y.-W.3
Cohen, M.L.4
Louie, S.G.5
-
10
-
-
84868897071
-
-
httρ://: 0805.4326
-
Evaldsson, M.; Zozoulenko, I. V.; Xu, H.; Heinzel, T. Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons, 2008, httρ://www.citebase.org/abstract?id=oai:arXiv.org: 0805.4326.
-
(2008)
Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons
-
-
Evaldsson, M.1
Zozoulenko, I.V.2
Xu, H.3
Heinzel, T.4
-
11
-
-
48249126271
-
-
Adam, S.; Cho, S.; Fuhrer, M. S.; Das Sarma, S. Phys. Reυ. Lett. 2008, 101, 046404.
-
(2008)
Phys. Reυ. Lett
, vol.101
, pp. 046404
-
-
Adam, S.1
Cho, S.2
Fuhrer, M.S.3
Das Sarma, S.4
-
12
-
-
35348815666
-
-
Sols, F.; Guinea, F.; Castro Neto, A. H. Phys. Reυ. Lett. 2007, 99, 166803.
-
(2007)
Phys. Reυ. Lett
, vol.99
, pp. 166803
-
-
Sols, F.1
Guinea, F.2
Castro Neto, A.H.3
-
13
-
-
33750459007
-
-
Ferran, A. C; Meyer, J. C; Scardaci, V.; Casiraghi, C; Lazzeri, M.; Mauri, F.; Pisanec, S.; Jiang, D.; Novoselov, K. S.; Röth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 187401
-
-
Ferran, A.C.1
Meyer, J.C.2
Scardaci, V.3
Casiraghi, C.4
Lazzeri, M.5
Mauri, F.6
Pisanec, S.7
Jiang, D.8
Novoselov, K.S.9
Röth, S.10
Geim, A.K.11
-
14
-
-
33847762932
-
-
Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C; Jungen, A.; Hierold, C; Wirtz, L. Nano Lett. 2007, 7, 238-242.
-
(2007)
Nano Lett
, vol.7
, pp. 238-242
-
-
Graf, D.1
Molitor, F.2
Ensslin, K.3
Stampfer, C.4
Jungen, A.5
Hierold, C.6
Wirtz, L.7
-
15
-
-
61649097469
-
-
Because two-wire measurements do not allow us to eliminate the effects of contact resistance, we base our mobility estimates on the slope of conductance traces at relatively low densities 10 V from the Dirac point where the graphene sheet resistance is still dominant over the contact resistances.
-
Because two-wire measurements do not allow us to eliminate the effects of contact resistance, we base our mobility estimates on the slope of conductance traces at relatively low densities 10 V from the Dirac point where the graphene sheet resistance is still dominant over the contact resistances.
-
-
-
-
16
-
-
84868904102
-
-
We calculate dot size based on a parallel plate caρacitor model where the back gate defines one plate of the capacitor and the graphene sheet and nearby metal gates define the other ρlate, justified by the presence of conducting graphene sheet everywhere except for the two narrow strips defining the constriction. The ρresence in each of the samples discussed here of graphene or metal gates near the constriction may result in some screening of the back gate voltage, resulting in an underestimation of dot areas in each case. In data sets where d//d V is measured with respect to side gate voltage, we calculate an equivalent back gate voltage using a separately measured multiplier
-
We calculate dot size based on a parallel plate caρacitor model where the back gate defines one plate of the capacitor and the graphene sheet and nearby metal gates define the other ρlate, justified by the presence of conducting graphene sheet everywhere except for the two narrow strips defining the constriction. The ρresence in each of the samples discussed here of graphene or metal gates near the constriction may result in some screening of the back gate voltage, resulting in an underestimation of dot areas in each case. In data sets where d//d V is measured with respect to side gate voltage, we calculate an equivalent back gate voltage using a separately measured multiplier.
-
-
-
-
17
-
-
61649120338
-
-
The model we use to generate the expected double-dot behavior does not take into account the change in Fermi level with gate voltage that takes place in our system
-
The model we use to generate the expected double-dot behavior does not take into account the change in Fermi level with gate voltage that takes place in our system.
-
-
-
-
18
-
-
61649088381
-
-
The uncertainties come largely from the conversion from side gate to equivalent back gate voltage
-
The uncertainties come largely from the conversion from side gate to equivalent back gate voltage.
-
-
-
-
19
-
-
42349100001
-
-
Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Science 2008, 320, 356-358.
-
(2008)
Science
, vol.320
, pp. 356-358
-
-
Ponomarenko, L.A.1
Schedin, F.2
Katsnelson, M.I.3
Yang, R.4
Hill, E.W.5
Novoselov, K.S.6
Geim, A.K.7
-
20
-
-
38049072038
-
-
Stampfer, C; Guttinger, J.; Molitor, F.; Graf, D.; Ihn, T.; Ensslin, K. App. Phys. Lett. 2008, 92, 012102.
-
(2008)
App. Phys. Lett
, vol.92
, pp. 012102
-
-
Stampfer, C.1
Guttinger, J.2
Molitor, F.3
Graf, D.4
Ihn, T.5
Ensslin, K.6
-
22
-
-
34548672547
-
-
Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U. C; Bao, W.; Lau, C. N. Science 2007, 317, 1530-1533.
-
(2007)
Science
, vol.317
, pp. 1530-1533
-
-
Miao, F.1
Wijeratne, S.2
Zhang, Y.3
Coskun, U.C.4
Bao, W.5
Lau, C.N.6
-
23
-
-
61649099023
-
-
Marlin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Nat. Phys. 2008, 2, 144-148.
-
(2008)
Nat. Phys
, vol.2
, pp. 144-148
-
-
Marlin, J.1
Akerman, N.2
Ulbricht, G.3
Lohmann, T.4
Smet, J.H.5
von Klitzing, K.6
Yacoby, A.7
-
24
-
-
48049113918
-
-
Chen, J.-H.; Jang, C; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Nat. Phys. 2008, 4, 377-381.
-
(2008)
Nat. Phys
, vol.4
, pp. 377-381
-
-
Chen, J.-H.1
Jang, C.2
Adam, S.3
Fuhrer, M.S.4
Williams, E.D.5
Ishigami, M.6
-
28
-
-
34247889934
-
-
Hwang, E. H.; Adam, S.; Das Sarma, S. Phys. Reυ. Lett. 2007, 98, 186806.
-
(2007)
Phys. Reυ. Lett
, vol.98
, pp. 186806
-
-
Hwang, E.H.1
Adam, S.2
Das Sarma, S.3
-
30
-
-
40849098550
-
-
Lewenkopf, E. R.; Mucciolo, C. H.; Castro Neto, A. H. Phys. Reυ. B 2008, 77, 081410.
-
(2008)
Phys. Reυ. B
, vol.77
, pp. 081410
-
-
Lewenkopf, E.R.1
Mucciolo, C.H.2
Castro Neto, A.H.3
-
32
-
-
84868899298
-
-
id=oai:arXiv.org:0811.0694v 1
-
Stamρfer, C; Guttinger, J.; Hellmüller, S.; Molitor, F.; Ensslin, K.; Hui, T. Energy gaps in etched graphene nanorìbbons, 2008, http://www.citebase.org/abstract ?id=oai:arXiv.org:0811.0694v 1.
-
(2008)
Energy gaps in etched graphene nanorìbbons
-
-
Stamρfer, C.1
Guttinger, J.2
Hellmüller, S.3
Molitor, F.4
Ensslin, K.5
Hui, T.6
|