메뉴 건너뛰기




Volumn 26, Issue 5, 2013, Pages 201-214

Fractal nature of protein surface roughness: A note on quantification of change of surface roughness in active sites, before and after binding

Author keywords

active site roughness; fractal dimension; protein surface roughness; statistical self similarity; van der Waals contacts

Indexed keywords

PROTEIN;

EID: 84875466478     PISSN: 09523499     EISSN: 10991352     Source Type: Journal    
DOI: 10.1002/jmr.2264     Document Type: Review
Times cited : (11)

References (103)
  • 1
    • 65649138753 scopus 로고    scopus 로고
    • Perturbation waves in proteins and protein networks: Applications of percolation and game theories in signaling and drug design
    • Antal M, Böde C, Csermely P,. 2009. Perturbation waves in proteins and protein networks: Applications of percolation and game theories in signaling and drug design. Curr. Prot. Pept. Sc. 10: 161-172.
    • (2009) Curr. Prot. Pept. Sc. , vol.10 , pp. 161-172
    • Antal, M.1    Böde, C.2    Csermely, P.3
  • 2
    • 0026752614 scopus 로고
    • A molecular model for the retinol binding protein-transthyretin complex
    • Aqvist J, Tapia O,. 1992. A molecular model for the retinol binding protein-transthyretin complex. J. Mol. Graph. 10: 120-123.
    • (1992) J. Mol. Graph. , vol.10 , pp. 120-123
    • Aqvist, J.1    Tapia, O.2
  • 3
    • 38249038015 scopus 로고
    • Surface fractality as a guide for studying protein-protein interactions
    • Aqvist J, Tapia O,. 1987. Surface fractality as a guide for studying protein-protein interactions. J. Mol. Graph. 5: 30-34.
    • (1987) J. Mol. Graph. , vol.5 , pp. 30-34
    • Aqvist, J.1    Tapia, O.2
  • 4
    • 33646086005 scopus 로고    scopus 로고
    • Multifractality in intracellular enzymatic reactions
    • Aranda J, Salgado E, Muñoz-Diosdado A,. 2006. Multifractality in intracellular enzymatic reactions. J. Th. Biol 240: 209-217.
    • (2006) J. Th. Biol , vol.240 , pp. 209-217
    • Aranda, J.1    Salgado, E.2    Muñoz-Diosdado, A.3
  • 5
    • 0030521035 scopus 로고    scopus 로고
    • Molecular shape descriptors
    • Lipkowitz K. Boyd D. (eds). VCH: Weinheim
    • Arteca G., 1996. Molecular shape descriptors. In Reviews in Computational Chemistry, Lipkowitz K, Boyd D, (eds). VCH: Weinheim, 9.
    • (1996) Reviews in Computational Chemistry , pp. 9
    • Arteca, G.1
  • 6
    • 0000777941 scopus 로고
    • Discrete characterization of cross-sections of molecular surfaces
    • Arteca G, Mezey P,. 1989. Discrete characterization of cross-sections of molecular surfaces. Theor. Chim. Acta 75: 333-352.
    • (1989) Theor. Chim. Acta , vol.75 , pp. 333-352
    • Arteca, G.1    Mezey, P.2
  • 8
    • 0001085283 scopus 로고
    • Fractal scaling laws in heterogeneous chemistry. Part I: Adsorptions, chemisorptions and interactions between adsorbates
    • Avnir D, Farin D,. 1990. Fractal scaling laws in heterogeneous chemistry. Part I: adsorptions, chemisorptions and interactions between adsorbates. New J. Chem. 14: 197-206.
    • (1990) New J. Chem. , vol.14 , pp. 197-206
    • Avnir, D.1    Farin, D.2
  • 9
    • 79651469614 scopus 로고    scopus 로고
    • Mathematical criteria to observe mesoscopic emergence of protein biochemical properties
    • DOI: 10.1007/s10910-010-9760-9
    • Banerji A, Ghosh I,. 2011a. Mathematical criteria to observe mesoscopic emergence of protein biochemical properties. J. Math. Chem. 49: 643-665. DOI: 10.1007/s10910-010-9760-9
    • (2011) J. Math. Chem. , vol.49 , pp. 643-665
    • Banerji, A.1    Ghosh, I.2
  • 10
    • 79960937465 scopus 로고    scopus 로고
    • Fractal symmetry of protein interior: What have we learned?
    • DOI: 10.1007/s00018-011-0722-6
    • Banerji A, Ghosh I,. 2011b. Fractal symmetry of protein interior: what have we learned?. Cell. Mol. Life. Sc. 68: 2711-2737. DOI: 10.1007/s00018-011- 0722-6
    • (2011) Cell. Mol. Life. Sc. , vol.68 , pp. 2711-2737
    • Banerji, A.1    Ghosh, I.2
  • 12
    • 70449394017 scopus 로고    scopus 로고
    • Revisiting the myths of protein interior: Studying proteins with mass-fractal hydrophobicity-fractal and polarizability-fractal dimensions
    • doi: 10.1371/journal.pone.0007361
    • Banerji A, Ghosh I,. 2009. Revisiting the myths of protein interior: studying proteins with mass-fractal hydrophobicity-fractal and polarizability-fractal dimensions. PLoS One 4 (10): e7361. doi: 10.1371/journal.pone.0007361
    • (2009) PLoS One , vol.4 , Issue.10
    • Banerji, A.1    Ghosh, I.2
  • 15
    • 84866070802 scopus 로고    scopus 로고
    • A study of interface roughness of heteromeric obligate and non-obligate protein-protein complexes
    • Bera I, Ray S,. 2009. A study of interface roughness of heteromeric obligate and non-obligate protein-protein complexes. Bioinformation 4: 210-215.
    • (2009) Bioinformation , vol.4 , pp. 210-215
    • Bera, I.1    Ray, S.2
  • 16
    • 0037019460 scopus 로고    scopus 로고
    • Molecular dynamics of water at the protein-solvent interface
    • Bizzarri A, Cannistraro S,. 2002. Molecular dynamics of water at the protein-solvent interface. J. Phys. Chem. B 106: 6617-6633.
    • (2002) J. Phys. Chem. B , vol.106 , pp. 6617-6633
    • Bizzarri, A.1    Cannistraro, S.2
  • 17
    • 84875421698 scopus 로고    scopus 로고
    • Last accessed on 14 March 2012
    • Bourke P,. 2012. Hypertext link. http://paulbourke.net/fractals/fracdim/. Last accessed on 14 March 2012.
    • (2012) Hypertext Link
    • Bourke, P.1
  • 18
    • 0342424187 scopus 로고    scopus 로고
    • Fast prediction and visualization of protein binding pockets with PASS
    • Brady Jr. G, Stouten P,. 2000. Fast prediction and visualization of protein binding pockets with PASS. J. Comp. Mol. Des. 14: 383-401.
    • (2000) J. Comp. Mol. Des. , vol.14 , pp. 383-401
    • Brady, Jr.G.1    Stouten, P.2
  • 20
    • 0036789619 scopus 로고    scopus 로고
    • Physics of protein-DNA interaction
    • Bruinsma R,. 2002. Physics of protein-DNA interaction. Phys. A: Stat. Mech. Appl. 313: 211-237.
    • (2002) Phys. A: Stat. Mech. Appl. , vol.313 , pp. 211-237
    • Bruinsma, R.1
  • 21
    • 0024842716 scopus 로고
    • The surface area of monomeric proteins: Significance of power law behavior
    • Bryant S, Islam S, Weaver D,. 1989. The surface area of monomeric proteins: significance of power law behavior. Prot.: Struct., Funct., Genet. 6: 418-423.
    • (1989) Prot.: Struct., Funct., Genet. , vol.6 , pp. 418-423
    • Bryant, S.1    Islam, S.2    Weaver, D.3
  • 23
    • 13744252339 scopus 로고    scopus 로고
    • Accuracy of structure-derived properties in simple comparative models of protein structures
    • Chakravarty S, Wang L, Sanchez R,. 2005. Accuracy of structure-derived properties in simple comparative models of protein structures. Nucl. Acid Res. 33: 244-259.
    • (2005) Nucl. Acid Res. , vol.33 , pp. 244-259
    • Chakravarty, S.1    Wang, L.2    Sanchez, R.3
  • 25
    • 0034293829 scopus 로고    scopus 로고
    • Correlation between the roughness degree of a protein surface and the mobility of solvent molecules on the surface
    • Choi J, Lee S,. 2000. Correlation between the roughness degree of a protein surface and the mobility of solvent molecules on the surface. J. Chem. Phys. 113: 6325-6329.
    • (2000) J. Chem. Phys. , vol.113 , pp. 6325-6329
    • Choi, J.1    Lee, S.2
  • 26
    • 33748102999 scopus 로고    scopus 로고
    • Travel depth, a new shape descriptor for macromolecules: Application to ligand binding
    • Coleman R, Sharp K,. 2006. Travel depth, a new shape descriptor for macromolecules: application to ligand binding. J. Mol. Biol. 362: 441-458.
    • (2006) J. Mol. Biol. , vol.362 , pp. 441-458
    • Coleman, R.1    Sharp, K.2
  • 28
    • 0021107965 scopus 로고
    • Solvent accessible surfaces of proteins and nucleic acids
    • Connolly ML,. 1983. Solvent accessible surfaces of proteins and nucleic acids. Science 221: 709-713.
    • (1983) Science , vol.221 , pp. 709-713
    • Connolly, M.L.1
  • 30
    • 34249296345 scopus 로고    scopus 로고
    • Chaos theory in chemistry and chemometrics: A review
    • Cramer J, Booksh K,. 2007. Chaos theory in chemistry and chemometrics: a review. J. Chemometrics 20: 447-454.
    • (2007) J. Chemometrics , vol.20 , pp. 447-454
    • Cramer, J.1    Booksh, K.2
  • 31
    • 3342936878 scopus 로고
    • An SCF solvation model for the hydrophobic effect and absolute free energies of aqueous salvation
    • Cramer C, Truhlar D,. 1992. An SCF solvation model for the hydrophobic effect and absolute free energies of aqueous salvation. Science 256: 213-217.
    • (1992) Science , vol.256 , pp. 213-217
    • Cramer, C.1    Truhlar, D.2
  • 32
    • 0028007076 scopus 로고
    • Fractal analysis of proton exchange kinetics in lysozyme
    • Dewey TG,. 1994. Fractal analysis of proton exchange kinetics in lysozyme. Proc. Natl. Acad. Sci. U. S. A. 91: 12101-12104.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 12101-12104
    • Dewey, T.G.1
  • 33
    • 0024712330 scopus 로고
    • Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer
    • Dewey T, Datta M,. 1989. Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer. Biophys. J. 56: 415-420.
    • (1989) Biophys. J. , vol.56 , pp. 415-420
    • Dewey, T.1    Datta, M.2
  • 34
    • 0030043489 scopus 로고    scopus 로고
    • Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr and Trp
    • Dougherty D., 1996. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr and Trp. Science 271: 163-168.
    • (1996) Science , vol.271 , pp. 163-168
    • Dougherty, D.1
  • 36
    • 41349085748 scopus 로고    scopus 로고
    • Mass fractal dimension and the compactness of proteins
    • Enright MB, Leitner DM,. 2005. Mass fractal dimension and the compactness of proteins. Phys. Rev. E 71: 011912.
    • (2005) Phys. Rev. e , vol.71 , pp. 011912
    • Enright, M.B.1    Leitner, D.M.2
  • 38
    • 0022092787 scopus 로고
    • Applications and limitations of boundary-line fractal analysis of irregular surfaces: Proteins, aggregates, and porous materials
    • Farin D, Peleg S, Yavin D, Avnir D,. 1985. Applications and limitations of boundary-line fractal analysis of irregular surfaces: proteins, aggregates, and porous materials. Langmuir 1: 399-407.
    • (1985) Langmuir , vol.1 , pp. 399-407
    • Farin, D.1    Peleg, S.2    Yavin, D.3    Avnir, D.4
  • 39
    • 0000305323 scopus 로고
    • An analysis of the fractal properties of the surfaces of globular proteins
    • Fedorov B, Fedorov B, Schmidt P,. 1993. An analysis of the fractal properties of the surfaces of globular proteins. J Chem Phys 99: 4076-4083.
    • (1993) J Chem Phys , vol.99 , pp. 4076-4083
    • Fedorov, B.1    Fedorov, B.2    Schmidt, P.3
  • 42
    • 0025346406 scopus 로고
    • Surface fractality of proteins from theory and NMR data
    • Fushman D., 1990. Surface fractality of proteins from theory and NMR data. J. Biomol. Struct. Dyn. 7: 1333-1344.
    • (1990) J. Biomol. Struct. Dyn. , vol.7 , pp. 1333-1344
    • Fushman, D.1
  • 43
    • 0028998264 scopus 로고
    • Increasing binding constants of ligands to carbonic anhydrase by using "greasy tails"
    • Gao J, Qiao S, Whitesides G,. 1995. Increasing binding constants of ligands to carbonic anhydrase by using "greasy tails". J. Med. Chem. 38: 2292-2301.
    • (1995) J. Med. Chem. , vol.38 , pp. 2292-2301
    • Gao, J.1    Qiao, S.2    Whitesides, G.3
  • 44
    • 0028452902 scopus 로고
    • The beauty of molecular surfaces as revealed by self-organizing neural networks
    • Gasteiger J, Li X, Uschold A,. 1994. The beauty of molecular surfaces as revealed by self-organizing neural networks. J. Mol. Graph 12: 90-97.
    • (1994) J. Mol. Graph , vol.12 , pp. 90-97
    • Gasteiger, J.1    Li, X.2    Uschold, A.3
  • 46
    • 0027193777 scopus 로고
    • What is the natural boundary for a protein in solution?
    • Gerstein M, Lynden-Bell RM,. 1993. What is the natural boundary for a protein in solution? J. Mol. Biol. 230: 641-650.
    • (1993) J. Mol. Biol. , vol.230 , pp. 641-650
    • Gerstein, M.1    Lynden-Bell, R.M.2
  • 47
    • 33748578600 scopus 로고    scopus 로고
    • Targeting protein-protein interactions with small molecules: Challenges and perspectives for computational binding epitope detection and ligand finding
    • Gonzalez-Ruiz D, Holger G,. 2006. Targeting protein-protein interactions with small molecules: challenges and perspectives for computational binding epitope detection and ligand finding. Curr Med Chem 13: 2607-2625.
    • (2006) Curr Med Chem , vol.13 , pp. 2607-2625
    • Gonzalez-Ruiz, D.1    Holger, G.2
  • 48
    • 29144483936 scopus 로고    scopus 로고
    • Predicting protein druggability
    • Hajduk P, Huth J, Tse C,. 2005. Predicting protein druggability; Drug Discov. Today 10: 1675-1682.
    • (2005) Drug Discov. Today , vol.10 , pp. 1675-1682
    • Hajduk, P.1    Huth, J.2    Tse, C.3
  • 49
    • 34250950477 scopus 로고
    • Dimension und äußeres Maß
    • Hausdorff F., 1919. Dimension und äußeres Maß. Mathematische Annalen 79: 157-179.
    • (1919) Mathematische Annalen , vol.79 , pp. 157-179
    • Hausdorff, F.1
  • 50
    • 33645816459 scopus 로고    scopus 로고
    • How proteins search for their specific sites on DNA: The role of DNA conformation
    • Hu T, Grosberg A, Shklovskii B,. 2006. How proteins search for their specific sites on DNA: the role of DNA conformation. Biophys. J. 90: 2731-2744.
    • (2006) Biophys. J. , vol.90 , pp. 2731-2744
    • Hu, T.1    Grosberg, A.2    Shklovskii, B.3
  • 51
    • 33750029942 scopus 로고    scopus 로고
    • LIGSITEcsc: Predicting ligand binding sites using the Connolly surface and degree of conservation
    • Huang B, Schroeder M,. 2006. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 6: 19.
    • (2006) BMC Struct. Biol , vol.6 , pp. 19
    • Huang, B.1    Schroeder, M.2
  • 52
    • 0026076451 scopus 로고
    • Variation of folded polypeptide surface area with probe size. Prot
    • Islam SA, Weaver DL,. 1991. Variation of folded polypeptide surface area with probe size. Prot. Struct. Funct. Gen. 10: 300-314.
    • (1991) Struct. Funct. Gen. , vol.10 , pp. 300-314
    • Islam, S.A.1    Weaver, D.L.2
  • 55
    • 33744544180 scopus 로고
    • Fractal reaction kinetics
    • Kopelman R., 1988. Fractal reaction kinetics. Science 241: 1620-1626.
    • (1988) Science , vol.241 , pp. 1620-1626
    • Kopelman, R.1
  • 56
    • 0032531947 scopus 로고    scopus 로고
    • Spanning binding sites on allosteric proteins with polymer-linked ligand dimers
    • Kramer R, Karpen J,. 1998. Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395: 710-713.
    • (1998) Nature , vol.395 , pp. 710-713
    • Kramer, R.1    Karpen, J.2
  • 57
    • 0026498010 scopus 로고
    • The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures
    • Kuhn L, Siani M, Pique M, Fisher C, Getzoff E, Tainer J,. 1992. The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. J. Mol. Biol. 228: 13-22.
    • (1992) J. Mol. Biol. , vol.228 , pp. 13-22
    • Kuhn, L.1    Siani, M.2    Pique, M.3    Fisher, C.4    Getzoff, E.5    Tainer, J.6
  • 58
    • 79952079177 scopus 로고    scopus 로고
    • Surface characterization of proteins using multi-fractal property of heat-denatured aggregates
    • Lahiri T, Mishra H, Sarkar S, Misra K,. 2008. Surface characterization of proteins using multi-fractal property of heat-denatured aggregates. Bioinformation 2: 379-383.
    • (2008) Bioinformation , vol.2 , pp. 379-383
    • Lahiri, T.1    Mishra, H.2    Sarkar, S.3    Misra, K.4
  • 60
    • 0015222647 scopus 로고
    • The interpretation of protein structures: Estimation of static accessibility
    • Lee BK, Richards FM,. 1971. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55: 379-400.
    • (1971) J. Mol. Biol. , vol.55 , pp. 379-400
    • Lee, B.K.1    Richards, F.M.2
  • 61
    • 0022347081 scopus 로고
    • Fractal surfaces of proteins
    • Lewis M, Rees DC,. 1985. Fractal surfaces of proteins. Science 230: 1163-1165.
    • (1985) Science , vol.230 , pp. 1163-1165
    • Lewis, M.1    Rees, D.C.2
  • 62
    • 0026331118 scopus 로고
    • Clefts and binding sites in protein receptors
    • Lewis R., 1991. Clefts and binding sites in protein receptors. Meth. Enzymol. 202: 126-156.
    • (1991) Meth. Enzymol. , vol.202 , pp. 126-156
    • Lewis, R.1
  • 63
    • 0025054643 scopus 로고
    • Fractal mechanisms for the allosteric effects of proteins and enzymes
    • Li H, Chen S, Zhao H,. 1990. Fractal mechanisms for the allosteric effects of proteins and enzymes. Biophys J 58: 1313-1320.
    • (1990) Biophys J , vol.58 , pp. 1313-1320
    • Li, H.1    Chen, S.2    Zhao, H.3
  • 64
    • 0025914613 scopus 로고
    • Fat fractal and multifractals for protein and enzyme surfaces
    • Li H, Chen S, Zhao H,. 1991. Fat fractal and multifractals for protein and enzyme surfaces. Int. J. Biol. Macromolecules 13: 210-216.
    • (1991) Int. J. Biol. Macromolecules , vol.13 , pp. 210-216
    • Li, H.1    Chen, S.2    Zhao, H.3
  • 65
    • 0031687653 scopus 로고    scopus 로고
    • Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design
    • Liang J, Edelsbrunner H, Woodward C,. 1998. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Prot. Sci. 7: 1884-1897.
    • (1998) Prot. Sci. , vol.7 , pp. 1884-1897
    • Liang, J.1    Edelsbrunner, H.2    Woodward, C.3
  • 66
    • 0036468670 scopus 로고    scopus 로고
    • Evolutionary predictions of binding surfaces and interactions
    • Lichtarge O, Sowa M,. 2002. Evolutionary predictions of binding surfaces and interactions. Curr Op Struct Biol 12: 21-27.
    • (2002) Curr Op Struct Biol , vol.12 , pp. 21-27
    • Lichtarge, O.1    Sowa, M.2
  • 67
    • 0027976930 scopus 로고
    • Molecular surface representation by sparse critical points
    • Lin S, Nussinov R, Fischer D, Wolfson H,. 1994. Molecular surface representation by sparse critical points. Proteins 18: 94-101.
    • (1994) Proteins , vol.18 , pp. 94-101
    • Lin, S.1    Nussinov, R.2    Fischer, D.3    Wolfson, H.4
  • 69
    • 5444244687 scopus 로고
    • How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
    • Mandelbrot B., 1967. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156: 636-638.
    • (1967) Science , vol.156 , pp. 636-638
    • Mandelbrot, B.1
  • 72
    • 33646757492 scopus 로고    scopus 로고
    • On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites
    • Nayal M, Honig B,. 2006. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Prot: Struct. Funct. Bioinf. 63: 892-906.
    • (2006) Prot: Struct. Funct. Bioinf. , vol.63 , pp. 892-906
    • Nayal, M.1    Honig, B.2
  • 73
    • 36048931839 scopus 로고    scopus 로고
    • Influence of water clustering on the dynamics of hydration water at the surface of a lysozyme
    • Oleinikova A, Smolin N, Brovchenko I,. 2007. Influence of water clustering on the dynamics of hydration water at the surface of a lysozyme. Biophys J. 93: 2986-3000.
    • (2007) Biophys J. , vol.93 , pp. 2986-3000
    • Oleinikova, A.1    Smolin, N.2    Brovchenko, I.3
  • 74
    • 0011980861 scopus 로고
    • A numerical study on the effective dimension of protein surfaces
    • Pacios L., 1995a. A numerical study on the effective dimension of protein surfaces. Chem. Phys. Lett. 242: 325-332.
    • (1995) Chem. Phys. Lett. , vol.242 , pp. 325-332
    • Pacios, L.1
  • 75
    • 0011958273 scopus 로고
    • Variations of surface areas and volumes in distinct molecular surfaces of biomolecules
    • Pacios L., 1995b. Variations of surface areas and volumes in distinct molecular surfaces of biomolecules. J. Mol. Mod. 1: 1610-2940.
    • (1995) J. Mol. Mod. , vol.1 , pp. 1610-2940
    • Pacios, L.1
  • 77
    • 0029935202 scopus 로고    scopus 로고
    • The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria
    • Peters KP, Fauck J, Frommel C,. 1996. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256: 201-213.
    • (1996) J. Mol. Biol. , vol.256 , pp. 201-213
    • Peters, K.P.1    Fauck, J.2    Frommel, C.3
  • 78
    • 34248232474 scopus 로고    scopus 로고
    • HotPatch: A statistical approach to finding biologically relevant features on protein surfaces
    • Pettit F, Bare E, Tsai A, Bowie J,. 2007. HotPatch: a statistical approach to finding biologically relevant features on protein surfaces. J. Mol. Biol. 369: 863-879.
    • (2007) J. Mol. Biol. , vol.369 , pp. 863-879
    • Pettit, F.1    Bare, E.2    Tsai, A.3    Bowie, J.4
  • 79
    • 0033613904 scopus 로고    scopus 로고
    • Protein surface roughness and small molecular binding sites
    • Pettit FK, Bowie JU,. 1999. Protein surface roughness and small molecular binding sites. J. Mol. Biol. 285: 1377-1382.
    • (1999) J. Mol. Biol. , vol.285 , pp. 1377-1382
    • Pettit, F.K.1    Bowie, J.U.2
  • 80
    • 0020746777 scopus 로고
    • Fractal dimension as working tool for surface roughness problems
    • Pfeifer P., 1984. Fractal dimension as working tool for surface roughness problems. Appl. Surf. Science 18: 146-164.
    • (1984) Appl. Surf. Science , vol.18 , pp. 146-164
    • Pfeifer, P.1
  • 81
    • 0001554901 scopus 로고
    • Fractal surface dimension of proteins: Lysozyme
    • Pfeifer P, Welz U, Wippermann H,. 1985. Fractal surface dimension of proteins: lysozyme. Chem. Phys. Lett. 113: 535-540.
    • (1985) Chem. Phys. Lett. , vol.113 , pp. 535-540
    • Pfeifer, P.1    Welz, U.2    Wippermann, H.3
  • 83
    • 62549145387 scopus 로고    scopus 로고
    • Scaling and self-organized criticality in proteins i
    • Phillips JC,. 2009. Scaling and self-organized criticality in proteins I. Proc. Natl. Acad. Sci. U. S. A. 106: 3107-3112.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 3107-3112
    • Phillips, J.C.1
  • 84
    • 0035341844 scopus 로고    scopus 로고
    • Molecular simulation of host-guest inclusion compounds: An approach to the lactodendrimers case
    • Pricl S, Fermeglia M,. 2001. Molecular simulation of host-guest inclusion compounds: an approach to the lactodendrimers case. Carbohydr. Polym. 45: 23-33.
    • (2001) Carbohydr. Polym. , vol.45 , pp. 23-33
    • Pricl, S.1    Fermeglia, M.2
  • 85
    • 0017876485 scopus 로고
    • Packing of α-helices: Geometrical constraints and contact areas
    • Richmond TJ, Richards FM,. 1978. Packing of α-helices: geometrical constraints and contact areas. J. Mol. Biol. 119: 537-555.
    • (1978) J. Mol. Biol. , vol.119 , pp. 537-555
    • Richmond, T.J.1    Richards, F.M.2
  • 86
    • 0017429069 scopus 로고
    • Areas, volumes, packing and protein structures
    • Richards FM,. 1977. Areas, volumes, packing and protein structures. Annu. Rev. Biophys. Bioeng. 6: 151-176.
    • (1977) Annu. Rev. Biophys. Bioeng. , vol.6 , pp. 151-176
    • Richards, F.M.1
  • 88
    • 4043129033 scopus 로고    scopus 로고
    • Interaction of DNA with clusters of amino acids in proteins
    • Sathyapriya R, Vishveshwara S,. 2004. Interaction of DNA with clusters of amino acids in proteins. Nucl. Acid Res. 32: 4109-4118.
    • (2004) Nucl. Acid Res. , vol.32 , pp. 4109-4118
    • Sathyapriya, R.1    Vishveshwara, S.2
  • 89
    • 50949129815 scopus 로고    scopus 로고
    • Classifying RNA-binding proteins based on electrostatic properties
    • Shazman S, Mandel-Gutfreund Y,. 2008. Classifying RNA-binding proteins based on electrostatic properties. PLoS Comput. Biol. 4: e1000146.
    • (2008) PLoS Comput. Biol. , vol.4
    • Shazman, S.1    Mandel-Gutfreund, Y.2
  • 90
    • 0031715982 scopus 로고    scopus 로고
    • Protein structure alignment by incremental combinatorial extension of the optimum path
    • Shindyalov I, Bourne P,. 1998. Protein structure alignment by incremental combinatorial extension of the optimum path. Protein Eng. 11: 739-747.
    • (1998) Protein Eng. , vol.11 , pp. 739-747
    • Shindyalov, I.1    Bourne, P.2
  • 91
    • 0035165967 scopus 로고    scopus 로고
    • CE: A resource to compute and review 3-D protein structure alignments
    • Shindyalov I, Bourne P,. 2001. CE: a resource to compute and review 3-D protein structure alignments. Nucl. Acid Res. 29: 228-229.
    • (2001) Nucl. Acid Res. , vol.29 , pp. 228-229
    • Shindyalov, I.1    Bourne, P.2
  • 94
    • 0037470573 scopus 로고    scopus 로고
    • Annotating nucleic acid-binding function based on protein structure
    • Stawiski E, Gregoret L, Mandel-Gutfreund Y,. 2003. Annotating nucleic acid-binding function based on protein structure. J. Mol. Biol. 326: 1065-1079.
    • (2003) J. Mol. Biol. , vol.326 , pp. 1065-1079
    • Stawiski, E.1    Gregoret, L.2    Mandel-Gutfreund, Y.3
  • 95
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • The Gene Ontology Consortium.
    • The Gene Ontology Consortium. 2000. Gene Ontology: tool for the unification of biology. Nat. Genet. 25: 25-29
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
  • 96
    • 0030960311 scopus 로고    scopus 로고
    • Roughness of the globular protein surface: Analysis of high resolution X-ray data
    • Timchenko A, Galzitskaya O, Serdyuk I,. 1997. Roughness of the globular protein surface: analysis of high resolution X-ray data. Proteins 28: 194-201.
    • (1997) Proteins , vol.28 , pp. 194-201
    • Timchenko, A.1    Galzitskaya, O.2    Serdyuk, I.3
  • 98
    • 0037197254 scopus 로고    scopus 로고
    • A novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature
    • Tsodikov O, Record Jr. M, Sergeev Y,. 2002. A novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. J. Comput. Chem. 23: 600-609.
    • (2002) J. Comput. Chem. , vol.23 , pp. 600-609
    • Tsodikov, O.1    Record, Jr.M.2    Sergeev, Y.3
  • 99
    • 41349118690 scopus 로고    scopus 로고
    • Small-world view of the amino acids that play a key role in protein folding
    • Vendruscolo M, Dokholyan NV, Paci E, Karplus M,. 2002. Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65: 061910.
    • (2002) Phys. Rev. e , vol.65 , pp. 061910
    • Vendruscolo, M.1    Dokholyan, N.V.2    Paci, E.3    Karplus, M.4
  • 100
    • 84886596703 scopus 로고
    • On continuous functions of a real argument that do not have a well-defined differential quotient. Mathemat. werke. II 71-74. Mayer & Muller, Berlin
    • Weirstrass K,. 1895. On continuous functions of a real argument that do not have a well-defined differential quotient. Mathemat. werke. II 71-74. Mayer & Muller, Berlin. In Classics on Fractals (Westview Press) 2004.
    • (1895) Classics on Fractals (Westview Press)
    • Weirstrass, K.1
  • 101
    • 0036424666 scopus 로고    scopus 로고
    • Structural basis of molecular recognition
    • Wodak S, Janin J,. 2003. Structural basis of molecular recognition. Adv. Prot. Chem. 61: 7-73.
    • (2003) Adv. Prot. Chem. , vol.61 , pp. 7-73
    • Wodak, S.1    Janin, J.2
  • 103
    • 0000751873 scopus 로고
    • Self-similarity of solvent-accessible surfaces of biological and synthetical macromolecules
    • Zachmann C, Kast S, Sariban A, Brickmann J,. 1993. Self-similarity of solvent-accessible surfaces of biological and synthetical macromolecules. J. Comp. Chem. 14: 1290-1300.
    • (1993) J. Comp. Chem. , vol.14 , pp. 1290-1300
    • Zachmann, C.1    Kast, S.2    Sariban, A.3    Brickmann, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.