메뉴 건너뛰기




Volumn 24, Issue 4, 2011, Pages 387-405

Selective information enhancement learning for creating interpretable representations in competitive learning

Author keywords

Attention; Competitive learning; Enhancement; Free energy; Mutual information; Selective information enhancement learning; SOM; Variable selection

Indexed keywords

ATTENTION; COMPETITIVE LEARNING; ENHANCEMENT; MUTUAL INFORMATIONS; SELECTIVE INFORMATION ENHANCEMENT LEARNING; SOM; VARIABLE SELECTION;

EID: 79951913762     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2010.12.009     Document Type: Article
Times cited : (9)

References (48)
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 1994, 5(4):537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 4
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • Feraud R., Clerot F. A methodology to explain neural network classification. Neural Networks 2002, 15:237-246.
    • (2002) Neural Networks , vol.15 , pp. 237-246
    • Feraud, R.1    Clerot, F.2
  • 5
    • 0031624596 scopus 로고    scopus 로고
    • A methodology for information theoretic feature extraction. In IEEE world congress on computational intelligence
    • Fisher, J. W., & Principe, J. C. (1998). A methodology for information theoretic feature extraction. In IEEE world congress on computational intelligence (pp. 1712-1716).
    • (1998) , pp. 1712-1716
    • Fisher, J.W.1    Principe, J.C.2
  • 6
    • 0034853398 scopus 로고    scopus 로고
    • Information processing in dendrites: II information theoretic complexity
    • Gurney K.N. Information processing in dendrites: II information theoretic complexity. Neural Networks 2001, 14:1005-1022.
    • (2001) Neural Networks , vol.14 , pp. 1005-1022
    • Gurney, K.N.1
  • 8
    • 0033082449 scopus 로고    scopus 로고
    • Using input parameter influences to support the decisions of feedforward neural networks
    • Howes P., Crook N. Using input parameter influences to support the decisions of feedforward neural networks. Neurocomputing 1999, 24:1999.
    • (1999) Neurocomputing , vol.24 , pp. 1999
    • Howes, P.1    Crook, N.2
  • 9
    • 0030130724 scopus 로고    scopus 로고
    • Structural learning with forgetting
    • Ishikawa M. Structural learning with forgetting. Neural Networks 1996, 9(3):509-521.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 10
    • 0034551785 scopus 로고    scopus 로고
    • Rule extraction by successive regularization
    • Ishikawa M. Rule extraction by successive regularization. Neural Networks 2000, 13:1171-1183.
    • (2000) Neural Networks , vol.13 , pp. 1171-1183
    • Ishikawa, M.1
  • 11
    • 0842343631 scopus 로고    scopus 로고
    • Information-theoretic competitive learning with inverse Euclidean distance output units
    • Kamimura R. Information-theoretic competitive learning with inverse Euclidean distance output units. Neural Processing Letters 2003, 18:163-184.
    • (2003) Neural Processing Letters , vol.18 , pp. 163-184
    • Kamimura, R.1
  • 12
    • 0242551550 scopus 로고    scopus 로고
    • Teacher-directed learning: information-theoretic competitive learning in supervised multi-layered networks
    • Kamimura R. Teacher-directed learning: information-theoretic competitive learning in supervised multi-layered networks. Connection Science 2003, 15:117-140.
    • (2003) Connection Science , vol.15 , pp. 117-140
    • Kamimura, R.1
  • 13
    • 27344446063 scopus 로고    scopus 로고
    • Improving information-theoretic competitive learning by accentuated information maximization
    • Kamimura R. Improving information-theoretic competitive learning by accentuated information maximization. International Journal of General Systems 2006, 34(3):219-233.
    • (2006) International Journal of General Systems , vol.34 , Issue.3 , pp. 219-233
    • Kamimura, R.1
  • 14
    • 40949098164 scopus 로고    scopus 로고
    • Information loss to extract distinctive features in competitive learning. In Proceedings of IEEE conference on systems, man, and cybernetics
    • Kamimura, R. (2007). Information loss to extract distinctive features in competitive learning. In Proceedings of IEEE conference on systems, man, and cybernetics (pp. 1217-1222).
    • (2007) , pp. 1217-1222
    • Kamimura, R.1
  • 15
    • 56349140716 scopus 로고    scopus 로고
    • Conditional information and information loss for flexible feature extraction. In Proceedings of the international joint conference on neural networks, IJCNN2008
    • Kamimura, R. (2008a). Conditional information and information loss for flexible feature extraction. In Proceedings of the international joint conference on neural networks, IJCNN2008 (pp. 2047-2083).
    • (2008) , pp. 2047-2083
    • Kamimura, R.1
  • 16
    • 79951866904 scopus 로고    scopus 로고
    • Feature detection and information loss in competitive learning. In Proceedings of SCIS and ISIS
    • Kamimura, R. (2008b). Feature detection and information loss in competitive learning. In Proceedings of SCIS and ISIS (pp. 1144-1148).
    • (2008) , pp. 1144-1148
    • Kamimura, R.1
  • 17
    • 58049083902 scopus 로고    scopus 로고
    • Feature discovery by enhancement and relaxation of competitive units
    • Springer, Intelligent data engineering and automated learning-IDEAL2008 (LNCS)
    • Kamimura R. Feature discovery by enhancement and relaxation of competitive units. LNCS 2008, Vol. 5326:148-155. Springer.
    • (2008) LNCS , vol.5326 , pp. 148-155
    • Kamimura, R.1
  • 18
    • 79951872649 scopus 로고    scopus 로고
    • Free energy-based competitive learning for mutual information maximization. In Proceedings of IEEE conference on systems, man, and cybernetics
    • Kamimura, R. (2008d). Free energy-based competitive learning for mutual information maximization. In Proceedings of IEEE conference on systems, man, and cybernetics (pp. 223-227).
    • (2008) , pp. 223-227
    • Kamimura, R.1
  • 19
    • 62849099253 scopus 로고    scopus 로고
    • Free energy-based competitive learning for self-organizing maps. In Proceedings of artificial intelligence and applications
    • Kamimura, R. (2008e). Free energy-based competitive learning for self-organizing maps. In Proceedings of artificial intelligence and applications (pp. 414-419).
    • (2008) , pp. 414-419
    • Kamimura, R.1
  • 20
    • 68149181024 scopus 로고    scopus 로고
    • Enhancing and relaxing competitive units for feature discovery
    • Kamimura R. Enhancing and relaxing competitive units for feature discovery. Neural Processing Letters 2009, 30(1):37-57.
    • (2009) Neural Processing Letters , vol.30 , Issue.1 , pp. 37-57
    • Kamimura, R.1
  • 22
    • 0035528493 scopus 로고    scopus 로고
    • Flexible feature discovery and structural information control
    • Kamimura R., Kamimura T., Uchida O. Flexible feature discovery and structural information control. Connection Science 2001, 13(4):323-347.
    • (2001) Connection Science , vol.13 , Issue.4 , pp. 323-347
    • Kamimura, R.1    Kamimura, T.2    Uchida, O.3
  • 23
    • 79951898675 scopus 로고    scopus 로고
    • Methods for interpreting a self-organized map in data analysis. In Proceedings of european symposium on artificial neural networks. Bruges, Belgium.
    • Kaski, S., Nikkila, J., & Kohonen, T. (1998). Methods for interpreting a self-organized map in data analysis. In Proceedings of european symposium on artificial neural networks. Bruges, Belgium.
    • (1998)
    • Kaski, S.1    Nikkila, J.2    Kohonen, T.3
  • 24
    • 0030176171 scopus 로고    scopus 로고
    • Global inhibition for selecting modes of attention
    • Kilmer W. Global inhibition for selecting modes of attention. Neural Networks 1996, 9(4):567-573.
    • (1996) Neural Networks , vol.9 , Issue.4 , pp. 567-573
    • Kilmer, W.1
  • 25
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artificial Intelligence 1997, 97(1-2):273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 28
    • 2542442752 scopus 로고    scopus 로고
    • A biased competition computational model of spatial and object-based attention mediating active visual search
    • Lanyon L.J., Denham S.L. A biased competition computational model of spatial and object-based attention mediating active visual search. Neurocomputing 2004, 58-60:655-662.
    • (2004) Neurocomputing , pp. 655-662
    • Lanyon, L.J.1    Denham, S.L.2
  • 29
    • 2542430278 scopus 로고    scopus 로고
    • A model of active visual search with object-based attention
    • Lanyon L.J., Denham S.L. A model of active visual search with object-based attention. Neural Networks 2004, 17:873-897.
    • (2004) Neural Networks , vol.17 , pp. 873-897
    • Lanyon, L.J.1    Denham, S.L.2
  • 30
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao I., Jain A.K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 1995, 6(2):296-317.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.2 , pp. 296-317
    • Mao, I.1    Jain, A.K.2
  • 31
    • 0035221306 scopus 로고    scopus 로고
    • Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines
    • Micheli A., Sperduti A., Starita A. Analysis of the internal representations developed by neural networks for structures applied to quantitative structure-activity relationship studies of benzodiazepines. Journal of Chemical Information and Computer Sciences 2001, 41:202-218.
    • (2001) Journal of Chemical Information and Computer Sciences , vol.41 , pp. 202-218
    • Micheli, A.1    Sperduti, A.2    Starita, A.3
  • 32
    • 0031258584 scopus 로고    scopus 로고
    • A neural global workspace model for conscious attention
    • Newman J., Baars B.J., Cho S.B. A neural global workspace model for conscious attention. Neural Networks 1997, 10(7):1195-1206.
    • (1997) Neural Networks , vol.10 , Issue.7 , pp. 1195-1206
    • Newman, J.1    Baars, B.J.2    Cho, S.B.3
  • 33
    • 0032517826 scopus 로고    scopus 로고
    • A novel method for examination of the variable contribution to computational neural network models
    • Nord L.I., Jacobsson S.P. A novel method for examination of the variable contribution to computational neural network models. Chemometrics and Intelligent Laboratory Systems 1998, 44:153-160.
    • (1998) Chemometrics and Intelligent Laboratory Systems , vol.44 , pp. 153-160
    • Nord, L.I.1    Jacobsson, S.P.2
  • 34
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: fast, incremental feature selection by gradient descent in function space
    • Perkins S., Lacker K., Theiler J. Grafting: fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research 2003, 3:1333-1356.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 37
    • 0000646059 scopus 로고
    • Learning internal representations by error progagation
    • MIT Press, Cambridge, D.E. Rumelhart, G.E.H. (Eds.)
    • Rumelhart D.E., Hinton G.E., Williams R. Learning internal representations by error progagation. Parallel distributed processing 1986, Vol. 1:318-362. MIT Press, Cambridge. D.E. Rumelhart, G.E.H. (Eds.).
    • (1986) Parallel distributed processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.3
  • 38
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • Rumelhart D.E., Zipser D. Feature discovery by competitive learning. Cognitive Science 1985, 9:75-112.
    • (1985) Cognitive Science , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 39
    • 0036565303 scopus 로고    scopus 로고
    • Extracting of rules from artificial neural networks for nonlinear regression
    • Setiono R., Leow W.K., Zurada J.M. Extracting of rules from artificial neural networks for nonlinear regression. IEEE Transactions on Neural Networks 2002, 13(3):564-577.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.M.3
  • 41
    • 21544477545 scopus 로고    scopus 로고
    • The interaction of attention and emotion
    • Taylor J.G., Gragopanagos N.F. The interaction of attention and emotion. Neural Networks 2005, 18:353-369.
    • (2005) Neural Networks , vol.18 , pp. 353-369
    • Taylor, J.G.1    Gragopanagos, N.F.2
  • 42
    • 0034868179 scopus 로고    scopus 로고
    • Nonlinear feature transform using maximum mutual information. In Proceedings of international joint conference on neural networks
    • Torkkola, K. (2001). Nonlinear feature transform using maximum mutual information. In Proceedings of international joint conference on neural networks (pp. 2756-2761).
    • (2001) , pp. 2756-2761
    • Torkkola, K.1
  • 43
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola K. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research 2003, 3:1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 44
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Towell G.G., Shavlik J.W. Extracting refined rules from knowledge-based neural networks. Machine Learning 1993, 13:71-101.
    • (1993) Machine Learning , vol.13 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 45
    • 79951869185 scopus 로고    scopus 로고
    • U*-matrix: a tool to visualize clusters in high dimensional data. Technical report 36. Department of Computer Science, University of Marburg.
    • Ultsch, A. (2003). U*-matrix: a tool to visualize clusters in high dimensional data. Technical report 36. Department of Computer Science, University of Marburg.
    • (2003)
    • Ultsch, A.1
  • 46
    • 0002432308 scopus 로고
    • Kohonen self-organization feature maps for exploratory data analysis
    • Kulwer Academic Publisher, Dordrecht
    • Ultsch A., Siemon H.P. Kohonen self-organization feature maps for exploratory data analysis. Proceedings of international neural network conference 1990, 305-308. Kulwer Academic Publisher, Dordrecht.
    • (1990) Proceedings of international neural network conference , pp. 305-308
    • Ultsch, A.1    Siemon, H.P.2
  • 47
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intelligent Data Analysis 1999, 3:111-126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 48
    • 79951881886 scopus 로고    scopus 로고
    • SOM toolbox for matlab 5. Technical report A57. Helsinki University of Technology.
    • Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). SOM toolbox for matlab 5. Technical report A57. Helsinki University of Technology.
    • (2000)
    • Vesanto, J.1    Himberg, J.2    Alhoniemi, E.3    Parhankangas, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.