메뉴 건너뛰기




Volumn 22, Issue 2, 2011, Pages 264-275

Guiding hidden layer representations for improved rule extraction from neural networks

Author keywords

Hidden layer representation; neural networks; penalty function; rule extraction

Indexed keywords

CLASSIFICATION ACCURACY; COMPUTATIONAL EXPERIMENT; DATA SETS; ENCODINGS; ERROR BACK-PROPAGATION; HIDDEN LAYERS; HUMAN-READABLE; INPUT PATTERNS; LEARNED PATTERNS; LEARNING METHODS; PENALTY FUNCTION; RULE COMPLEXITY; RULE EXTRACTION; RULE EXTRACTION FROM NEURAL NETWORKS; WEIGHT MATRICES;

EID: 79951671371     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2094205     Document Type: Article
Times cited : (27)

References (29)
  • 1
    • 79951680564 scopus 로고    scopus 로고
    • A review of techniques for extracting rules from trained artificial neural networks
    • Cambridge, U.K.: Cambridge Univ. Press
    • R. Andrews, A. Tickle, and J. Diederich, "A review of techniques for extracting rules from trained artificial neural networks," in Clinical Applications of Artificial Neural Networks. Cambridge, U.K.: Cambridge Univ. Press, 2001, pp. 256-297.
    • (2001) Clinical Applications of Artificial Neural Networks , pp. 256-297
    • Andrews, R.1    Tickle, A.2    Diederich, J.3
  • 3
    • 0035271419 scopus 로고    scopus 로고
    • A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
    • DOI 10.1109/72.914524, PII S1045922700098556
    • W. Duch, R. Adamczak, and K. Grabczewski, "A new methodology of extraction, optimization and application of crisp and fuzzy logical rules," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 277-306, Mar. 2001. (Pubitemid 32371484)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.2 , pp. 277-306
    • Duch, W.1    Adamczak, R.2    Grabczewski, K.3
  • 4
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • DOI 10.1162/0899766053630350
    • H. Jacobsson, "Rule extraction from recurrent neural networks: A taxonomy and review," Neural Comput., vol. 17, no. 6, pp. 1223-1263, Jun. 2005. (Pubitemid 40653138)
    • (2005) Neural Computation , vol.17 , Issue.6 , pp. 1223-1263
    • Jacobsson, H.1
  • 5
    • 67349104672 scopus 로고    scopus 로고
    • Generating rules with predicates, terms and variables from the pruned neural networks
    • May
    • R. Nayak, "Generating rules with predicates, terms and variables from the pruned neural networks," Neural Netw., vol. 22, no. 4, pp. 405-414, May 2009.
    • (2009) Neural Netw. , vol.22 , Issue.4 , pp. 405-414
    • Nayak, R.1
  • 6
    • 33644921465 scopus 로고    scopus 로고
    • Orthogonal Search-Based Rule Extraction (OSRE) for Trained Neural Networks: A Practical and Efficient Approach
    • DOI 10.1109/TNN.2005.863472
    • T. Etchells and P. Lisboa, "Orthogonal search-based rule extraction (OSRE) for trained neural networks: A practical and efficient approach," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 374-384, Mar. 2006. (Pubitemid 43380061)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 374-384
    • Etchells, T.A.1    Lisboa, P.J.G.2
  • 7
    • 40549122717 scopus 로고    scopus 로고
    • Recursive neural network rule extraction for data with mixed attributes
    • DOI 10.1109/TNN.2007.908641
    • R. Setiono, B. Baesens, and C. Mues, "Recursive neural network rule extraction for data with mixed attributes," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 299-307, Feb. 2008. (Pubitemid 351359294)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.2 , pp. 299-307
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 9
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Mar.
    • H. Tsukimoto, "Extracting rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 377-389, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.2 , pp. 377-389
    • Tsukimoto, H.1
  • 10
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • DOI 10.1109/TNN.2002.1000125, PII S1045922702044491
    • R. Setiono, W. Leow, and J. Zurada, "Extraction of rules from artificial neural networks for nonlinear regression," IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 564-577, May 2002. (Pubitemid 34669648)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.M.3
  • 14
    • 0342378106 scopus 로고    scopus 로고
    • Neurolinear: From neural networks to oblique decision rules
    • DOI 10.1016/S0925-2312(97)00038-6, PII S0925231297000386
    • R. Setiono and H. Liu, "Neurolinear: From neural networks to oblique decision rules," Neurocomputing, vol. 17, no. 1, pp. 1-24, Sep. 1997. (Pubitemid 27433442)
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 1-24
    • Setiono, R.1    Liu, H.2
  • 15
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Oct.
    • G. G. Towell and J. W. Shavlik, "Extracting refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, no. 1, pp. 71-101, Oct. 1993.
    • (1993) Mach. Learn. , vol.13 , Issue.1 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 16
    • 33745937122 scopus 로고    scopus 로고
    • Effective neural network pruning using cross-validation
    • DOI 10.1109/IJCNN.2005.1555984, 1555984, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • T. Huynh and R. Setiono, "Effective neural network pruning using crossvalidation," in Proc. Int. Joint Conf. Neural Netw., vol. 2. Jul.-Aug. 2005, pp. 972-977. (Pubitemid 44055583)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.2 , pp. 972-977
    • Huynh, T.Q.1    Setiono, R.2
  • 17
  • 18
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • San Mateo, CA: Morgan Kaufmann
    • A. Krogh and J. Hertz, "A simple weight decay can improve generalization," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1992, pp. 950-957.
    • (1992) Advances in Neural Information Processing Systems , pp. 950-957
    • Krogh, A.1    Hertz, J.2
  • 19
    • 0029503525 scopus 로고
    • Chi2: Feature selection and discretization of numeric attributes
    • Herndon, VA, Nov.
    • H. Liu and R. Setiono, "Chi2: Feature selection and discretization of numeric attributes," in Proc. 7th IEEE Int. Conf. Tools Artif. Intell., Herndon, VA, Nov. 1995, pp. 388-391.
    • (1995) Proc. 7th IEEE Int. Conf. Tools Artif. Intell. , pp. 388-391
    • Liu, H.1    Setiono, R.2
  • 22
    • 0030332781 scopus 로고    scopus 로고
    • A probabilistic classification system for predicting the cellular localization sites of proteins
    • P. Horton and K. Nakai, "A probabilistic classification system for predicting the cellular localization sites of proteins," in Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 4. 1996, pp. 109-115.
    • (1996) Proc. Int. Conf. Intell. Syst. Mol. Biol. , vol.4 , pp. 109-115
    • Horton, P.1    Nakai, K.2
  • 24
    • 0345665376 scopus 로고
    • Learning competition and cooperation
    • Mar.
    • S. Cho and J. Reggia, "Learning competition and cooperation," Neural Comput., vol. 5, no. 2, pp. 242-259, Mar. 1993.
    • (1993) Neural Comput. , vol.5 , Issue.2 , pp. 242-259
    • Cho, S.1    Reggia, J.2
  • 25
    • 70350336479 scopus 로고    scopus 로고
    • When does online BP training converge?
    • Oct.
    • Z. Xu, R. Zhang, and W. Jing, "When does online BP training converge?" IEEE Trans. Neural Netw., vol. 20, no. 10, pp. 1529-1539, Oct. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.10 , pp. 1529-1539
    • Xu, Z.1    Zhang, R.2    Jing, W.3
  • 26
    • 77953123103 scopus 로고    scopus 로고
    • Novel maximum-margin training algorithms for supervised neural networks
    • Jun.
    • O. Ludwig and U. Nunes, "Novel maximum-margin training algorithms for supervised neural networks," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 972-984, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 972-984
    • Ludwig, O.1    Nunes, U.2
  • 27
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Nov.
    • M. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 28
    • 77953120155 scopus 로고    scopus 로고
    • Improved computation for Levenberg- Marquardt training
    • Jun.
    • B. Wilamowski and H. Yu, "Improved computation for Levenberg- Marquardt training," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930-937, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 930-937
    • Wilamowski, B.1    Yu, H.2
  • 29
    • 70449453588 scopus 로고    scopus 로고
    • Improving rule extraction from neural networks by modifying hidden layer representations
    • Atlanta, GA, Jun.
    • T. Huynh and J. Reggia, "Improving rule extraction from neural networks by modifying hidden layer representations," in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, Jun. 2009, pp. 1316-1321.
    • (2009) Proc. Int. Joint Conf. Neural Netw. , pp. 1316-1321
    • Huynh, T.1    Reggia, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.