-
1
-
-
79951680564
-
A review of techniques for extracting rules from trained artificial neural networks
-
Cambridge, U.K.: Cambridge Univ. Press
-
R. Andrews, A. Tickle, and J. Diederich, "A review of techniques for extracting rules from trained artificial neural networks," in Clinical Applications of Artificial Neural Networks. Cambridge, U.K.: Cambridge Univ. Press, 2001, pp. 256-297.
-
(2001)
Clinical Applications of Artificial Neural Networks
, pp. 256-297
-
-
Andrews, R.1
Tickle, A.2
Diederich, J.3
-
2
-
-
84884649951
-
Extracting propositional rules from feed-forward neural networks a new decompositional approach
-
S. Bader, S. Holldobler, and V. Mayer-Eichberger, "Extracting propositional rules from feed-forward neural networks a new decompositional approach," in Proc. 3rd Int. Workshop Neural-Symbolic Learn. Reason., 2007, pp. 1-6.
-
(2007)
Proc. 3rd Int. Workshop Neural-Symbolic Learn. Reason.
, pp. 1-6
-
-
Bader, S.1
Holldobler, S.2
Mayer-Eichberger, V.3
-
3
-
-
0035271419
-
A new methodology of extraction, optimization and application of crisp and fuzzy logical rules
-
DOI 10.1109/72.914524, PII S1045922700098556
-
W. Duch, R. Adamczak, and K. Grabczewski, "A new methodology of extraction, optimization and application of crisp and fuzzy logical rules," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 277-306, Mar. 2001. (Pubitemid 32371484)
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 277-306
-
-
Duch, W.1
Adamczak, R.2
Grabczewski, K.3
-
4
-
-
18444364992
-
Rule extraction from recurrent neural networks: A taxonomy and review
-
DOI 10.1162/0899766053630350
-
H. Jacobsson, "Rule extraction from recurrent neural networks: A taxonomy and review," Neural Comput., vol. 17, no. 6, pp. 1223-1263, Jun. 2005. (Pubitemid 40653138)
-
(2005)
Neural Computation
, vol.17
, Issue.6
, pp. 1223-1263
-
-
Jacobsson, H.1
-
5
-
-
67349104672
-
Generating rules with predicates, terms and variables from the pruned neural networks
-
May
-
R. Nayak, "Generating rules with predicates, terms and variables from the pruned neural networks," Neural Netw., vol. 22, no. 4, pp. 405-414, May 2009.
-
(2009)
Neural Netw.
, vol.22
, Issue.4
, pp. 405-414
-
-
Nayak, R.1
-
6
-
-
33644921465
-
Orthogonal Search-Based Rule Extraction (OSRE) for Trained Neural Networks: A Practical and Efficient Approach
-
DOI 10.1109/TNN.2005.863472
-
T. Etchells and P. Lisboa, "Orthogonal search-based rule extraction (OSRE) for trained neural networks: A practical and efficient approach," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 374-384, Mar. 2006. (Pubitemid 43380061)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.2
, pp. 374-384
-
-
Etchells, T.A.1
Lisboa, P.J.G.2
-
7
-
-
40549122717
-
Recursive neural network rule extraction for data with mixed attributes
-
DOI 10.1109/TNN.2007.908641
-
R. Setiono, B. Baesens, and C. Mues, "Recursive neural network rule extraction for data with mixed attributes," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 299-307, Feb. 2008. (Pubitemid 351359294)
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.2
, pp. 299-307
-
-
Setiono, R.1
Baesens, B.2
Mues, C.3
-
8
-
-
41649093790
-
Minerva: Sequential covering for rule extraction
-
DOI 10.1109/TSMCB.2007.912079
-
J. Huysmans, R. Setiono, B. Baesens, and J. Vanthienen, "Minerva: Sequential covering for rule extraction," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 38, no. 2, pp. 299-309, Apr. 2008. (Pubitemid 351479553)
-
(2008)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.38
, Issue.2
, pp. 299-309
-
-
Huysmans, J.1
Setiono, R.2
Baesens, B.3
Vanthienen, J.4
-
9
-
-
0033742671
-
Extracting rules from trained neural networks
-
Mar.
-
H. Tsukimoto, "Extracting rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 377-389, Mar. 2000.
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.2
, pp. 377-389
-
-
Tsukimoto, H.1
-
10
-
-
0036565303
-
Extraction of rules from artificial neural networks for nonlinear regression
-
DOI 10.1109/TNN.2002.1000125, PII S1045922702044491
-
R. Setiono, W. Leow, and J. Zurada, "Extraction of rules from artificial neural networks for nonlinear regression," IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 564-577, May 2002. (Pubitemid 34669648)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.3
, pp. 564-577
-
-
Setiono, R.1
Leow, W.K.2
Zurada, J.M.3
-
13
-
-
0003040892
-
Neurorule: A connectionist approach to data mining
-
H. Lu, R. Setiono, and H. Liu, "Neurorule: A connectionist approach to data mining," in Proc. 21st Int. Conf. Very Large Data Bases, 1995, pp. 478-489.
-
(1995)
Proc. 21st Int. Conf. Very Large Data Bases
, pp. 478-489
-
-
Lu, H.1
Setiono, R.2
Liu, H.3
-
14
-
-
0342378106
-
Neurolinear: From neural networks to oblique decision rules
-
DOI 10.1016/S0925-2312(97)00038-6, PII S0925231297000386
-
R. Setiono and H. Liu, "Neurolinear: From neural networks to oblique decision rules," Neurocomputing, vol. 17, no. 1, pp. 1-24, Sep. 1997. (Pubitemid 27433442)
-
(1997)
Neurocomputing
, vol.17
, Issue.1
, pp. 1-24
-
-
Setiono, R.1
Liu, H.2
-
15
-
-
0027678679
-
Extracting refined rules from knowledge-based neural networks
-
Oct.
-
G. G. Towell and J. W. Shavlik, "Extracting refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, no. 1, pp. 71-101, Oct. 1993.
-
(1993)
Mach. Learn.
, vol.13
, Issue.1
, pp. 71-101
-
-
Towell, G.G.1
Shavlik, J.W.2
-
16
-
-
33745937122
-
Effective neural network pruning using cross-validation
-
DOI 10.1109/IJCNN.2005.1555984, 1555984, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
-
T. Huynh and R. Setiono, "Effective neural network pruning using crossvalidation," in Proc. Int. Joint Conf. Neural Netw., vol. 2. Jul.-Aug. 2005, pp. 972-977. (Pubitemid 44055583)
-
(2005)
Proceedings of the International Joint Conference on Neural Networks
, vol.2
, pp. 972-977
-
-
Huynh, T.Q.1
Setiono, R.2
-
17
-
-
0141534963
-
RPROP - A fast adaptive learning algorithm
-
Antalya, Turkey
-
M. Riedmiller and H. Braun, "RPROP - A fast adaptive learning algorithm," in Proc. Int. Symp. Comput. Inform. Sci., Antalya, Turkey, 1992, pp. 279-286.
-
(1992)
Proc. Int. Symp. Comput. Inform. Sci.
, pp. 279-286
-
-
Riedmiller, M.1
Braun, H.2
-
18
-
-
0000029122
-
A simple weight decay can improve generalization
-
San Mateo, CA: Morgan Kaufmann
-
A. Krogh and J. Hertz, "A simple weight decay can improve generalization," in Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1992, pp. 950-957.
-
(1992)
Advances in Neural Information Processing Systems
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.2
-
19
-
-
0029503525
-
Chi2: Feature selection and discretization of numeric attributes
-
Herndon, VA, Nov.
-
H. Liu and R. Setiono, "Chi2: Feature selection and discretization of numeric attributes," in Proc. 7th IEEE Int. Conf. Tools Artif. Intell., Herndon, VA, Nov. 1995, pp. 388-391.
-
(1995)
Proc. 7th IEEE Int. Conf. Tools Artif. Intell.
, pp. 388-391
-
-
Liu, H.1
Setiono, R.2
-
22
-
-
0030332781
-
A probabilistic classification system for predicting the cellular localization sites of proteins
-
P. Horton and K. Nakai, "A probabilistic classification system for predicting the cellular localization sites of proteins," in Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 4. 1996, pp. 109-115.
-
(1996)
Proc. Int. Conf. Intell. Syst. Mol. Biol.
, vol.4
, pp. 109-115
-
-
Horton, P.1
Nakai, K.2
-
24
-
-
0345665376
-
Learning competition and cooperation
-
Mar.
-
S. Cho and J. Reggia, "Learning competition and cooperation," Neural Comput., vol. 5, no. 2, pp. 242-259, Mar. 1993.
-
(1993)
Neural Comput.
, vol.5
, Issue.2
, pp. 242-259
-
-
Cho, S.1
Reggia, J.2
-
25
-
-
70350336479
-
When does online BP training converge?
-
Oct.
-
Z. Xu, R. Zhang, and W. Jing, "When does online BP training converge?" IEEE Trans. Neural Netw., vol. 20, no. 10, pp. 1529-1539, Oct. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.10
, pp. 1529-1539
-
-
Xu, Z.1
Zhang, R.2
Jing, W.3
-
26
-
-
77953123103
-
Novel maximum-margin training algorithms for supervised neural networks
-
Jun.
-
O. Ludwig and U. Nunes, "Novel maximum-margin training algorithms for supervised neural networks," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 972-984, Jun. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.6
, pp. 972-984
-
-
Ludwig, O.1
Nunes, U.2
-
27
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Nov.
-
M. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.1
Menhaj, M.2
-
28
-
-
77953120155
-
Improved computation for Levenberg- Marquardt training
-
Jun.
-
B. Wilamowski and H. Yu, "Improved computation for Levenberg- Marquardt training," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930-937, Jun. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.6
, pp. 930-937
-
-
Wilamowski, B.1
Yu, H.2
-
29
-
-
70449453588
-
Improving rule extraction from neural networks by modifying hidden layer representations
-
Atlanta, GA, Jun.
-
T. Huynh and J. Reggia, "Improving rule extraction from neural networks by modifying hidden layer representations," in Proc. Int. Joint Conf. Neural Netw., Atlanta, GA, Jun. 2009, pp. 1316-1321.
-
(2009)
Proc. Int. Joint Conf. Neural Netw.
, pp. 1316-1321
-
-
Huynh, T.1
Reggia, J.2
|