메뉴 건너뛰기




Volumn 71, Issue 10-12, 2008, Pages 2281-2290

Structure learning by pruning in independent component analysis

Author keywords

Independent component analysis; Pruning; Sparsity; Structure

Indexed keywords

ABSTRACTING; BAYESIAN NETWORKS; DATA REDUCTION; MATHEMATICAL MODELS; SIGNAL PROCESSING;

EID: 44649169676     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.09.016     Document Type: Article
Times cited : (22)

References (32)
  • 1
    • 0000888026 scopus 로고
    • Information theory and the extension of the maximum likelihood principle
    • Springer-Verlag
    • Akaike H. Information theory and the extension of the maximum likelihood principle. Breakthroughs in Statistics vol. 1 (1993), Springer-Verlag 610-624
    • (1993) Breakthroughs in Statistics , vol.1 , pp. 610-624
    • Akaike, H.1
  • 2
    • 0029411030 scopus 로고
    • An information-maximisation approach to blind separation and blind deconvolution
    • Bell A., and Sejnowski T. An information-maximisation approach to blind separation and blind deconvolution. Neural Comput. 7 6 (1995) 1129-1159
    • (1995) Neural Comput. , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 5
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • Cardoso J.-F. Infomax and maximum likelihood for blind source separation. IEEE Signal Process. Lett. 4 4 (1997) 112-114
    • (1997) IEEE Signal Process. Lett. , vol.4 , Issue.4 , pp. 112-114
    • Cardoso, J.-F.1
  • 7
    • 0031240407 scopus 로고    scopus 로고
    • Universal distribution of saliencies for pruning in layered neural networks
    • Gorodkin J., Hansen L.K., Lautrup B., and Solla S.A. Universal distribution of saliencies for pruning in layered neural networks. Int. J. of Neural Systems 8 5-6 (1997) 489-498
    • (1997) Int. J. of Neural Systems , vol.8 , Issue.5-6 , pp. 489-498
    • Gorodkin, J.1    Hansen, L.K.2    Lautrup, B.3    Solla, S.A.4
  • 8
    • 0031214394 scopus 로고    scopus 로고
    • Regularization with a pruning prior
    • Goutte C., and Hansen L.K. Regularization with a pruning prior. Neural Networks 10 6 (1997) 1053-1059
    • (1997) Neural Networks , vol.10 , Issue.6 , pp. 1053-1059
    • Goutte, C.1    Hansen, L.K.2
  • 9
    • 0029711440 scopus 로고    scopus 로고
    • C. Goutte. On the use of a purning prior for neural networks, in: Neural Networks for Signal Processing VI, 1996, pp. 52-61.
    • C. Goutte. On the use of a purning prior for neural networks, in: Neural Networks for Signal Processing VI, 1996, pp. 52-61.
  • 11
    • 0001352974 scopus 로고
    • Pruning from adaptive regularization
    • Hansen L.K., and Rasmussen C.E. Pruning from adaptive regularization. Neural Computation 6 6 (1994) 1222-1231
    • (1994) Neural Computation , vol.6 , Issue.6 , pp. 1222-1231
    • Hansen, L.K.1    Rasmussen, C.E.2
  • 12
    • 44649177358 scopus 로고    scopus 로고
    • B. Hassibi, D.G. Stork. Second order derivatives for network prunning: Optimal brain surgeon, in: Advances in Neural Information Processing Systems, vol. 5, Morgan Kaufmann, 1993, pp. 164-171.
    • B. Hassibi, D.G. Stork. Second order derivatives for network prunning: Optimal brain surgeon, in: Advances in Neural Information Processing Systems, vol. 5, Morgan Kaufmann, 1993, pp. 164-171.
  • 13
    • 44649104838 scopus 로고    scopus 로고
    • Z. He, A. Cichocki, K-EVD clustering and Its Applications to Sparse Component Analysis, in: Independent Component Analysis and Blind Signal Separation (ICA), 2006, pp. 164-171.
    • Z. He, A. Cichocki, K-EVD clustering and Its Applications to Sparse Component Analysis, in: Independent Component Analysis and Blind Signal Separation (ICA), 2006, pp. 164-171.
  • 14
    • 0001387715 scopus 로고    scopus 로고
    • Mean field approaches to independent component analysis
    • Højen-Sørensen P.A., Winther O., and Hansen L.K. Mean field approaches to independent component analysis. Neural Comput. 14 (2002) 889-918
    • (2002) Neural Comput. , vol.14 , pp. 889-918
    • Højen-Sørensen, P.A.1    Winther, O.2    Hansen, L.K.3
  • 15
    • 33745711562 scopus 로고    scopus 로고
    • P.O. Hoyer, S. Shimizu, A. Hyvärinen, Y. Kano, A.J. Kerminen, New permutation algorithms for causal discovery using ICA, in: Independent Component Analysis and Blind Source Separation (ICA), 2006, pp. 115-122.
    • P.O. Hoyer, S. Shimizu, A. Hyvärinen, Y. Kano, A.J. Kerminen, New permutation algorithms for causal discovery using ICA, in: Independent Component Analysis and Blind Source Separation (ICA), 2006, pp. 115-122.
  • 17
    • 0036909360 scopus 로고    scopus 로고
    • Neural network pruning applied to real exchange rate analysis
    • Kaashoek J.F., and van Dijk H.K. Neural network pruning applied to real exchange rate analysis. J. Forecasting 21 8 (2002) 559-577
    • (2002) J. Forecasting , vol.21 , Issue.8 , pp. 559-577
    • Kaashoek, J.F.1    van Dijk, H.K.2
  • 18
    • 44649128903 scopus 로고    scopus 로고
    • Y. Le Cun, J. Denker, S. Solla. Optimal brain damage, in: Advances in Neural Information Processing Systems, vol. 2, Morgan Kaufmann, 1990. pp. 598-605.
    • Y. Le Cun, J. Denker, S. Solla. Optimal brain damage, in: Advances in Neural Information Processing Systems, vol. 2, Morgan Kaufmann, 1990. pp. 598-605.
  • 19
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • MacKay D.J.C. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Network: Comput. Neural Syst. 6 (1995) 469-505
    • (1995) Network: Comput. Neural Syst. , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 20
    • 44649181857 scopus 로고    scopus 로고
    • H.B. Nielsen, A matlab toolbox for optimization and data fitting, Web, 2006. URL 〈http://www2.imm.dtu.dk/∼hbn/immoptibox/〉.
    • H.B. Nielsen, A matlab toolbox for optimization and data fitting, Web, 2006. URL 〈http://www2.imm.dtu.dk/∼hbn/immoptibox/〉.
  • 21
    • 33745725519 scopus 로고    scopus 로고
    • H.-M. Park, J.-H. Lee, S.-H. Oh, S.-Y. Lee, Blind deconvolution with sparse priors on the deconvolution filters, in: Independent Component Analysis and Blind Signal Separation (ICA), 2006, pp. 658-665.
    • H.-M. Park, J.-H. Lee, S.-H. Oh, S.-Y. Lee, Blind deconvolution with sparse priors on the deconvolution filters, in: Independent Component Analysis and Blind Signal Separation (ICA), 2006, pp. 658-665.
  • 22
    • 33646775340 scopus 로고    scopus 로고
    • M.S. Pedersen, J. Larsen, U. Kjems, On the difference between updating the mixing matrix and updating the separation matrix, in: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. V, Philadelphia, PA, USA, March 2005, pp. 297-300.
    • M.S. Pedersen, J. Larsen, U. Kjems, On the difference between updating the mixing matrix and updating the separation matrix, in: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. V, Philadelphia, PA, USA, March 2005, pp. 297-300.
  • 23
    • 44649175418 scopus 로고    scopus 로고
    • M.W. Pedersen, L.K. Hansen, J. Larsen, Pruning with generalization based weight saliencies: γ OBD, γ OBS, in: Advances in Neural Information Processing Systems, vol. 8, MIT Press, 1996, pp. 521-527.
    • M.W. Pedersen, L.K. Hansen, J. Larsen, Pruning with generalization based weight saliencies: γ OBD, γ OBS, in: Advances in Neural Information Processing Systems, vol. 8, MIT Press, 1996, pp. 521-527.
  • 25
    • 33745725489 scopus 로고    scopus 로고
    • J.P. Rosca, D. Erdogmus, J.C. Príncipe, S. Haykin (Eds.), Independent Component Analysis and Blind Signal Separation, 6th International Conference, ICA 2006, Charleston, SC, USA, Proceedings, Lecture Notes in Computer Science, vol. 3889, Springer, Berlin, vol. 3889, 2006.
    • J.P. Rosca, D. Erdogmus, J.C. Príncipe, S. Haykin (Eds.), Independent Component Analysis and Blind Signal Separation, 6th International Conference, ICA 2006, Charleston, SC, USA, Proceedings, Lecture Notes in Computer Science, vol. 3889, Springer, Berlin, vol. 3889, 2006.
  • 26
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6 2 (1978) 461-464
    • (1978) Ann. Statist. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 44649086788 scopus 로고    scopus 로고
    • J.B. Tenenbaum, T.L. Griffits, Structure learning in human causal induction, in: Advances in Neural Information Processing Systems, MIT Press, 2000, pp. 59-65.
    • J.B. Tenenbaum, T.L. Griffits, Structure learning in human causal induction, in: Advances in Neural Information Processing Systems, MIT Press, 2000, pp. 59-65.
  • 29
    • 0001037725 scopus 로고
    • Improving generalization of neural networks through pruning
    • Thodberg H.H. Improving generalization of neural networks through pruning. Int. J. Neural Syst. 1 4 (1991) 317-326
    • (1991) Int. J. Neural Syst. , vol.1 , Issue.4 , pp. 317-326
    • Thodberg, H.H.1
  • 30
    • 0029754435 scopus 로고    scopus 로고
    • Review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg H.H. Review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Trans. Neural Networks 7 1 (1996) 56-72
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.1 , pp. 56-72
    • Thodberg, H.H.1
  • 31
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. B 58 1 (1996) 267-288
    • (1996) J. Roy. Statist. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Res. 1 (2001) 211-244
    • (2001) J. Mach. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.