메뉴 건너뛰기




Volumn 6, Issue 1, 2013, Pages

Using Bayesian networks to discover relations between genes, environment, and disease

Author keywords

Arsenic; Belief networks; Bioinformatics; Complex traits; Genetic epidemiology; SNP; Structural learning

Indexed keywords

ALGORITHM; BAYESIAN LEARNING; BLADDER CANCER; CANCER INCIDENCE; CANCER SUSCEPTIBILITY; ENVIRONMENT; ENVIRONMENTAL EXPOSURE; EPISTASIS; GENE; GENE LINKAGE DISEQUILIBRIUM; GENETIC ASSOCIATION; GENOTYPE; GENOTYPE ENVIRONMENT INTERACTION; MULTIFACTOR DIMENSIONALITY REDUCTION; PHENOTYPE; PRIORITY JOURNAL; REVIEW; SINGLE NUCLEOTIDE POLYMORPHISM;

EID: 84875148417     PISSN: None     EISSN: 17560381     Source Type: Journal    
DOI: 10.1186/1756-0381-6-6     Document Type: Review
Times cited : (79)

References (68)
  • 1
    • 0037373275 scopus 로고    scopus 로고
    • Discovering genotypes underlying human phenotypes: Past successes for mendelian disease, future approaches for complex disease
    • DOI 10.1038/ng1090
    • Discovering genotypes underlying human phenotypes: past successes of Mendelian disease, future approaches for complex disease. Botstein D, Risch N, Nat Genet 2003 33 228 237 10.1038/ng1090 12610532 (Pubitemid 36278833)
    • (2003) Nature Genetics , vol.33 , Issue.SUPPL. , pp. 228-237
    • Botstein, D.1    Risch, N.2
  • 2
    • 33847059098 scopus 로고    scopus 로고
    • Exploiting gene-environment interaction to detect genetic associations
    • 10.1159/000099183 17283440
    • Exploiting gene-environment interaction to detect genetic associations. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ, Hum Hered 2007 63 111 119 10.1159/000099183 17283440
    • (2007) Hum Hered , vol.63 , pp. 111-119
    • Kraft, P.1    Yen, Y.C.2    Stram, D.O.3    Morrison, J.4    Gauderman, W.J.5
  • 3
    • 70349943777 scopus 로고    scopus 로고
    • An agenda for personalized medicine
    • 10.1038/461724a 19812653
    • An agenda for personalized medicine. Ng PC, Venter JC, Murray SS, Levy S, Nature 2009 461 724 726 10.1038/461724a 19812653
    • (2009) Nature , vol.461 , pp. 724-726
    • Ng, P.C.1    Venter, J.C.2    Murray, S.S.3    Levy, S.4
  • 4
    • 77954827460 scopus 로고    scopus 로고
    • The path to personalized medicine
    • 10.1056/NEJMp1006304 20551152
    • The path to personalized medicine. Hamburg MA, Collins FS, N Engl J Med 2010 363 301 304 10.1056/NEJMp1006304 20551152
    • (2010) N Engl J Med , vol.363 , pp. 301-304
    • Hamburg, M.A.1    Collins, F.S.2
  • 5
    • 25144441907 scopus 로고    scopus 로고
    • Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels)
    • DOI 10.1093/bioinformatics/bti505
    • Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels). Rodin AS, Boerwinkle E, Bioinformatics 2005 21 3273 3278 10.1093/bioinformatics/bti505 15914545 (Pubitemid 41418441)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3273-3278
    • Rodin, A.S.1    Boerwinkle, E.2
  • 6
    • 16844366938 scopus 로고    scopus 로고
    • Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia
    • 10.1038/ng1533 15778708
    • Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH, Nat Genet 2005 37 435 440 10.1038/ng1533 15778708
    • (2005) Nat Genet , vol.37 , pp. 435-440
    • Sebastiani, P.1    Ramoni, M.F.2    Nolan, V.3    Baldwin, C.T.4    Steinberg, M.H.5
  • 8
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 10.1089/106652700750050961
    • Using Bayesian networks to analyze expression data. Friedman N, Linial M, Nachman I, Pe'er D, J Comp Biol 2000 7 601 620 10.1089/106652700750050961
    • (2000) J Comp Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'Er, D.4
  • 9
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • DOI 10.1093/bioinformatics/bth448
    • Advances to Bayesian network inference for generating causal networks from observational biological data. Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED, Bioinfomatics 2004 20 3594 3603 10.1093/bioinformatics/bth448 (Pubitemid 40136795)
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 10
    • 0842288337 scopus 로고    scopus 로고
    • Inferring Cellular Networks Using Probabilistic Graphical Models
    • DOI 10.1126/science.1094068
    • Inferring cellular networks using probabilistic graphical models. Friedman N, Science 2004 303 799 805 10.1126/science.1094068 14764868 (Pubitemid 38174650)
    • (2004) Science , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 11
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • DOI 10.1126/science.1105809
    • Causal protein-signaling networks derived from multi-parameter single-cell data. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP, Science 2005 308 523 529 10.1126/science.1105809 15845847 (Pubitemid 40570578)
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 12
    • 33748779553 scopus 로고    scopus 로고
    • Insights into Protein-Protein Interfaces using a Bayesian Network Prediction Method
    • DOI 10.1016/j.jmb.2006.07.028, PII S0022283606008965
    • Insights into protein-protein interfaces using a Bayesian network prediction method. Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR, J Mol Biol 2006 362 365 386 10.1016/j.jmb.2006.07.028 16919296 (Pubitemid 44403921)
    • (2006) Journal of Molecular Biology , vol.362 , Issue.2 , pp. 365-386
    • Bradford, J.R.1    Needham, C.J.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 13
    • 0142052944 scopus 로고    scopus 로고
    • A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data
    • DOI 10.1126/science.1087361
    • A Bayesian networks approach for predicting protein-protein interactions from genomic data. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M, Science 2003 302 449 453 10.1126/science.1087361 14564010 (Pubitemid 37296271)
    • (2003) Science , vol.302 , Issue.5644 , pp. 449-453
    • Jansen, R.1    Yu, H.2    Greenbaum, D.3    Kluger, Y.4    Krogan, N.J.5    Chung, S.6    Emili, A.7    Snyder, M.8    Greenblatt, J.F.9    Gerstein, M.10
  • 14
    • 2542631175 scopus 로고    scopus 로고
    • Graphical models for genetic analysis
    • Graphical models for genetic analysis. Lauritzen SL, Sheehan NA, Statist Sci 2004 18 489 514
    • (2004) Statist Sci , vol.18 , pp. 489-514
    • Lauritzen, S.L.1    Sheehan, N.A.2
  • 15
    • 43049099377 scopus 로고    scopus 로고
    • A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis
    • DOI 10.1111/j.1464-410X.2008.07591.x
    • A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis. Rouprêt M, Hupertan V, Yates DR, Comperat E, Catto JW, Meuth M, Lackmichi A, Ricci S, Lacave R, Gattegno B, Richard F, Hamdy FC, Cussenot O, BJU International 2008 101 1448 1453 10.1111/j.1464-410X.2008.07591.x 18325051 (Pubitemid 351623989)
    • (2008) BJU International , vol.101 , Issue.11 , pp. 1448-1453
    • Roupret, M.1    Hupertan, V.2    Yates, D.R.3    Comperat, E.4    Catto, J.W.F.5    Meuth, M.6    Lackmichi, A.7    Ricci, S.8    Lacave, R.9    Gattegno, B.10    Richard, F.11    Hamdy, F.C.12    Cussenot, O.13
  • 20
    • 7444257916 scopus 로고    scopus 로고
    • Genetics, statistics and human disease: Analytical retooling for complexity
    • DOI 10.1016/j.tig.2004.09.007, PII S0168952504002744
    • Genetics, statistics and human disease: analytical retooling for complexity. Thornton-Wells TA, Moore JH, Haines JL, TRENDS in Genetics 2004 20 640 647 10.1016/j.tig.2004.09.007 15522460 (Pubitemid 39441283)
    • (2004) Trends in Genetics , vol.20 , Issue.12 , pp. 640-647
    • Thornton-Wells, T.A.1    Moore, J.H.2    Haines, J.L.3
  • 21
    • 41149152918 scopus 로고    scopus 로고
    • Biostatistical aspects of genome-wide association studies
    • Biostatistical aspects of genome-wide association studies. Ziegler A, Inke RK, Thompson JR, Biometric J 2008 50 1 21
    • (2008) Biometric J , vol.50 , pp. 1-21
    • Ziegler, A.1    Inke, R.K.2    Thompson, J.R.3
  • 22
    • 77949497074 scopus 로고    scopus 로고
    • Bioinformatics challenges for genome-wide association studies
    • 10.1093/bioinformatics/btp713 20053841
    • Bioinformatics challenges for genome-wide association studies. Moore JH, Asselbergs FW, Williams SM, Bioinformatics 2010 26 445 455 10.1093/ bioinformatics/btp713 20053841
    • (2010) Bioinformatics , vol.26 , pp. 445-455
    • Moore, J.H.1    Asselbergs, F.W.2    Williams, S.M.3
  • 23
    • 0036260234 scopus 로고    scopus 로고
    • New strategies for identifying gene-gene interactions in hypertension
    • DOI 10.1080/07853890252953473
    • New strategies for identifying gene-gene interactions in hypertension. Moore JH, Williams SM, Ann Med 2002 34 88 95 10.1080/07853890252953473 12108579 (Pubitemid 34596846)
    • (2002) Annals of Medicine , vol.34 , Issue.2 , pp. 88-95
    • Moore, J.H.1    Williams, S.M.2
  • 24
    • 29244467388 scopus 로고    scopus 로고
    • A testing framework for identifying susceptibility genes in the presence of epistasis
    • DOI 10.1086/498850
    • A testing framework for identifying susceptibility genes in the presence of epistasis. Millstein J, Conti DV, Gilliland FD, Gauderman WJ, Am J Hum Genet 2006 78 15 27 10.1086/498850 16385446 (Pubitemid 41833156)
    • (2006) American Journal of Human Genetics , vol.78 , Issue.1 , pp. 15-27
    • Millstein, J.1    Conti, D.V.2    Gilliland, F.D.3    Gauderman, W.J.4
  • 25
    • 16844366786 scopus 로고    scopus 로고
    • Genome-wide strategies for detecting multiple loci than influence complex diseases
    • 10.1038/ng1537 15793588
    • Genome-wide strategies for detecting multiple loci than influence complex diseases. Marchini J, Donnelly P, Cardon LR, Nat Genet 2005 37 413 417 10.1038/ng1537 15793588
    • (2005) Nat Genet , vol.37 , pp. 413-417
    • Marchini, J.1    Donnelly, P.2    Cardon, L.R.3
  • 26
    • 0345411335 scopus 로고    scopus 로고
    • The ubiquitous nature of epistasis in determining susceptibility to common human diseases
    • DOI 10.1159/000073735
    • The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Moore JH, Hum Hered 2003 56 73 82 10.1159/000073735 14614241 (Pubitemid 37465073)
    • (2003) Human Heredity , vol.56 , Issue.1-3 , pp. 73-82
    • Moore, J.H.1
  • 27
    • 0034973569 scopus 로고    scopus 로고
    • Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
    • DOI 10.1086/321276
    • Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH, Am J Hum Genet 2001 69 138 147 10.1086/321276 11404819 (Pubitemid 32614026)
    • (2001) American Journal of Human Genetics , vol.69 , Issue.1 , pp. 138-147
    • Ritchie, M.D.1    Hahn, L.W.2    Roodi, N.3    Bailey, L.R.4    Dupont, W.D.5    Parl, F.F.6    Moore, J.H.7
  • 28
    • 0037433052 scopus 로고    scopus 로고
    • Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions
    • DOI 10.1093/bioinformatics/btf869
    • Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Hahn LW, Ritchie MD, Moore JH, Bioinformatics 2003 19 376 382 10.1093/bioinformatics/btf869 12584123 (Pubitemid 36284937)
    • (2003) Bioinformatics , vol.19 , Issue.3 , pp. 376-382
    • Hahn, L.W.1    Ritchie, M.D.2    Moore, J.H.3
  • 32
    • 0001775899 scopus 로고
    • An algorithm for deciding if a set of observed independencies has a causal explanation
    • Burlington, MA: Morgan Kaufmann Dubois D, Wellman MP, D'Ambrosio B, Smets P
    • An algorithm for deciding if a set of observed independencies has a causal explanation. Verma T, Pearl J, Proceedings of the eighth conference on uncertainty in artificial intelligence (UAI-92) Burlington, MA: Morgan Kaufmann, Dubois D, Wellman MP, D'Ambrosio B, Smets P, 1992 323 330
    • (1992) Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence (UAI-92) , pp. 323-330
    • Verma, T.1    Pearl, J.2
  • 35
    • 34548459831 scopus 로고    scopus 로고
    • A primer on learning in Bayesian networks for computational biology
    • DOI 10.1371/journal.pcbi.0030129
    • A primer on learning in Bayesian networks for computational biology. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR, PLoS Computational Biology 2007 3 1409 1416 (Pubitemid 47358051)
    • (2007) PLoS Computational Biology , vol.3 , Issue.8 , pp. 1409-1416
    • Needham, C.J.1    Bradford, J.R.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 36
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • A Bayesian method for the induction of probabilistic networks from data. Cooper GF, Herskovits E, Mach Learn 1992 9 309 347
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 38
    • 79958782255 scopus 로고    scopus 로고
    • Learning Bayesian networks: Approaches and issues
    • 10.1017/S0269888910000251
    • Learning Bayesian networks: approaches and issues. Daly R, Shen Q, Aitken S, Knowl Eng Rev 2011 26 99 157 10.1017/S0269888910000251
    • (2011) Knowl Eng Rev , vol.26 , pp. 99-157
    • Daly, R.1    Shen, Q.2    Aitken, S.3
  • 42
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • The Max-Min hill-climbing Bayesian network structure learning algorithm. Tsamardinos I, Brown LE, Aliferis CF, Mach Learn 2006 65 31 78 10.1007/s10994-006-6889-7 (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 43
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Maximum likelihood from incomplete data via the EM algorithm. Dempster AP, Laired NM, Rubin DB, J Royal Stat Soc B 1977 39 1 39
    • (1977) J Royal Stat Soc B , vol.39 , pp. 1-39
    • Dempster, A.P.1    Laired, N.M.2    Rubin, D.B.3
  • 50
    • 33646839863 scopus 로고    scopus 로고
    • Learning Bayesian networks from incomplete data based on EMI method
    • Washington, DC: IEEE Computer Society Wu X, Tuzhilin A, Shavlik J
    • Learning Bayesian networks from incomplete data based on EMI method. Tian F, Zhang H, Lu Y, Proceedings of the third IEEE conference on data mining (ICDM 2003) Washington, DC: IEEE Computer Society, Wu X, Tuzhilin A, Shavlik J, 2003 323 330
    • (2003) Proceedings of the Third IEEE Conference on Data Mining (ICDM 2003) , pp. 323-330
    • Tian, F.1    Zhang, H.2    Lu, Y.3
  • 52
    • 0042496103 scopus 로고    scopus 로고
    • Learning Equivalence Classes of Bayesian-Network Structures
    • DOI 10.1162/153244302760200696
    • Learning equivalence classes of Bayesian-network structures. Chickering DM, J Mach Learn Res 2002 2 445 498 (Pubitemid 135712569)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 445-498
    • Chickering, D.M.1
  • 53
    • 82455199406 scopus 로고    scopus 로고
    • Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data
    • 22373088
    • Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data. Schlosberg CE, Schwantes-An TH, Duan W, Saccone N, BMC Proc 2011 5 Supp 9 109 22373088
    • (2011) BMC Proc , vol.5 , Issue.SUPPL. 9 , pp. 19109
    • Schlosberg, C.E.1    Schwantes-An, T.H.2    Duan, W.3    Saccone, N.4
  • 54
    • 77952257916 scopus 로고    scopus 로고
    • A Markov blanket-based method for detecting causal SNPs in GWAS
    • 10.1186/1471-2105-11-S3-S5 21210984
    • A Markov blanket-based method for detecting causal SNPs in GWAS. Han B, Park M, Chen XW, BMC Bioinformatics 2010 11 Suppl 3 5 10.1186/1471-2105-11-S3-S5 21210984
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 3 , pp. 195
    • Han, B.1    Park, M.2    Chen, X.W.3
  • 55
    • 68649115066 scopus 로고    scopus 로고
    • A testable prognostic model of nicotine dependence
    • 10.1080/01677060802572911 19184766
    • A testable prognostic model of nicotine dependence. Ramoni RB, Saccone NL, Hatsukami DK, Bierut LJ, Ramoni MF, J Neurogenet 2009 23 283 292 10.1080/01677060802572911 19184766
    • (2009) J Neurogenet , vol.23 , pp. 283-292
    • Ramoni, R.B.1    Saccone, N.L.2    Hatsukami, D.K.3    Bierut, L.J.4    Ramoni, M.F.5
  • 57
    • 0031656631 scopus 로고    scopus 로고
    • Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population
    • Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Karagas MR, Tosteson TD, Blum J, Morris JS, Baron JA, Klaue B, Environ Health Perspect 1998 106 Suppl 4 1047 1050 10.1289/ehp.98106s41047 9703491 (Pubitemid 28419791)
    • (1998) Environmental Health Perspectives , vol.106 , Issue.SUPPL. 4 , pp. 1047-1050
    • Karagas, M.R.1    Tosteson, T.D.2    Blum, J.3    Morris, J.S.4    Baron, J.A.5    Klaue, B.6
  • 58
    • 4043051642 scopus 로고    scopus 로고
    • Incidence of transitional cell carcinoma of the bladder and arsenic exposure in New Hampshire
    • DOI 10.1023/B:CACO.0000036452.55199.a3
    • Incidence of transitional cell carcinoma of the bladder and arsenic exposure in New Hampshire. Karagas MR, Tosteson TD, Morris JS, Demidenko E, Mott LA, Heaney J, Schned A, Cancer Causes Control 2004 15 465 472 15286466 (Pubitemid 39060938)
    • (2004) Cancer Causes and Control , vol.15 , Issue.5 , pp. 465-472
    • Karagas, M.R.1    Tosteson, T.D.2    Morris, J.S.3    Demidenko, E.4    Mott, L.A.5    Heaney, J.6    Schned, A.7
  • 59
    • 62149107442 scopus 로고    scopus 로고
    • DNA repair genotype interacts with arsenic exposure to increase bladder cancer risk
    • 10.1016/j.toxlet.2009.01.013 19429237
    • DNA repair genotype interacts with arsenic exposure to increase bladder cancer risk. Andrew AS, Mason RA, Kelse KT, Schned AR, Marsit CJ, Nelson HH, Karagas MR, Toxicol Lett 2009 187 10 14 10.1016/j.toxlet.2009.01.013 19429237
    • (2009) Toxicol Lett , vol.187 , pp. 10-14
    • Andrew, A.S.1    Mason, R.A.2    Kelse, K.T.3    Schned, A.R.4    Marsit, C.J.5    Nelson, H.H.6    Karagas, M.R.7
  • 60
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian Networks with the bnlearn R package
    • 21603108
    • Learning Bayesian Networks with the bnlearn R package. Scutari M, J Stat Softw 2010 35 1 22 21603108
    • (2010) J Stat Softw , vol.35 , pp. 1-22
    • Scutari, M.1
  • 61
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team, Vienna: R foundation for statistical computing
    • R Development Core Team, R: a language and environment for statistical computing Vienna: R foundation for statistical computing 2011
    • (2011) R: A Language and Environment for Statistical Computing
  • 64
    • 85156253956 scopus 로고    scopus 로고
    • Discovering structure in continuous variables using Bayesian networks
    • Cambridge: MIT Press Touretzky DS, Mozer MC, Hasselmo ME
    • Discovering structure in continuous variables using Bayesian networks. Hofmann R, Tresp V, Advances in neural information processing systems 8 (NIPS*1995) Cambridge: MIT Press, Touretzky DS, Mozer MC, Hasselmo ME, 1996 500 506
    • (1996) Advances in Neural Information Processing Systems 8 (NIPS*1995) , pp. 500-506
    • Hofmann, R.1    Tresp, V.2
  • 66
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Learning Bayesian networks: the combination of knowledge and statistical data. Heckerman D, Geiger D, Chickering DM, Mach Learn 1995 20 197 243
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 67
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian network
    • 10.1023/A:1020249912095
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian network. Friedman N, Koller D, Mach Learn 2003 50 95 125 10.1023/A:1020249912095
    • (2003) Mach Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 68
    • 84859100582 scopus 로고    scopus 로고
    • A novel Bayesian graphical model for genome-wide multi-SNP association mapping
    • 10.1002/gepi.20661 22127647
    • A novel Bayesian graphical model for genome-wide multi-SNP association mapping. Zhang Y, Genetic Epidemiology 2012 36 36 47 10.1002/gepi.20661 22127647
    • (2012) Genetic Epidemiology , vol.36 , pp. 36-47
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.