-
1
-
-
0028482006
-
Learning Bayesian belief networks-an approach based on the MDL principle
-
W. Lam and F. Bacchus, "Learning Bayesian belief networks-an approach based on the MDL principle," Computer Intelligence, vol. 10, no. 4, pp. 269-293, 1994.
-
(1994)
Computer Intelligence
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
2
-
-
4444383943
-
An Efficient Data Mining Method for Learning Bayesian Networks Using an Evolutionary Algorithm-Based Hybrid Approach
-
Aug
-
M. L. Wong and K. S. Leung, "An Efficient Data Mining Method for Learning Bayesian Networks Using an Evolutionary Algorithm-Based Hybrid Approach," IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 378-404, Aug. 2004.
-
(2004)
IEEE Transactions on Evolutionary Computation
, vol.8
, Issue.4
, pp. 378-404
-
-
Wong, M.L.1
Leung, K.S.2
-
3
-
-
0001586968
-
Learning Belief Networks in the Presence of Missing Values and Hidden Variables
-
N. Friedman, "Learning Belief Networks in the Presence of Missing Values and Hidden Variables," In ML'97, 1997.
-
(1997)
ML'97
-
-
Friedman, N.1
-
4
-
-
34547241315
-
-
N. Friedman, The Bayesian Structural EM Algorithm, In UAI, 1998.
-
N. Friedman, "The Bayesian Structural EM Algorithm," In UAI, 1998.
-
-
-
-
5
-
-
1642340376
-
Learning Bayesian Networks from Incomplete Data Using Evolutionary Algorithms
-
J. W. Myers, K. B. Laskey and K. A. DeJong, "Learning Bayesian Networks from Incomplete Data Using Evolutionary Algorithms," In GECCO'99, 1999.
-
(1999)
GECCO'99
-
-
Myers, J.W.1
Laskey, K.B.2
DeJong, K.A.3
-
6
-
-
0002629270
-
Maximum. Likelihood from Incomplete Data via the EM Algorithm
-
A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum. Likelihood from Incomplete Data via the EM Algorithm," Journal of the Royal Statistical Society(B), vol. 39, no. 1, pp. 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society(B)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
58149210716
-
The EM algorithm for graphical association models with missing data
-
S. L. Lauritzen, "The EM algorithm for graphical association models with missing data," Computational Statistics and Data Analysis, pp.191-201, 1995.
-
(1995)
Computational Statistics and Data Analysis
, pp. 191-201
-
-
Lauritzen, S.L.1
-
8
-
-
0033685826
-
An improved Bayesian Structural EM algorithm for learning Bayesian networks for clustering
-
J. M. Peña, J. A. Lozano and P. Larrañaga, "An improved Bayesian Structural EM algorithm for learning Bayesian networks for clustering," Pattern. Recognition Letters, pp. 779-786, 2000.
-
(2000)
Pattern. Recognition Letters
, pp. 779-786
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
9
-
-
0036532762
-
Machine Learning(2002)
-
April
-
J. M. Peña, J. A. Lozano and P. Larrañaga, "Learning Recursive Bayesian Multinets for Data Clustering by Means of Constructive Induction," Machine Learning(2002), pp. 63-89, April, 2002.
-
(2002)
, pp. 63-89
-
-
Peña, J.M.1
Lozano, J.A.2
Larrañaga, P.3
-
10
-
-
0003250080
-
Parameter Estimation in Bayesian Networks from Incomplete Databases
-
M. Ramoni and P. Sebastinani, "Parameter Estimation in Bayesian Networks from Incomplete Databases," Intelligent Data Analysis 2(1), 1998.
-
(1998)
Intelligent Data Analysis
, vol.2
, Issue.1
-
-
Ramoni, M.1
Sebastinani, P.2
-
11
-
-
34547341558
-
Efficient Parameter Learning in Bayesian. networks from incomplete databases
-
M. Ramoni and P. Sebastinani, "Efficient Parameter Learning in Bayesian. networks from incomplete databases," KMI-TR-41, 1997.
-
(1997)
KMI-TR-41
-
-
Ramoni, M.1
Sebastinani, P.2
-
12
-
-
0344328840
-
The use of exogenous knowledge to learn Bayesian networks from incomplete databases
-
M. Ramoni and P. Sebastinani, "The use of exogenous knowledge to learn Bayesian networks from incomplete databases," KMI-TR-44, 1997.
-
(1997)
KMI-TR-44
-
-
Ramoni, M.1
Sebastinani, P.2
-
13
-
-
0004161838
-
-
2nd ed, pp, Cambridge Univ. Press
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing," 2nd ed., pp. 423, Cambridge Univ. Press, 1992.
-
(1992)
Numerical Recipes in C: The Art of Scientific Computing
, pp. 423
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
14
-
-
0003846041
-
-
Microsoft Res, Adv. Technol. Div, Redmond, WA, MSR-TR-95-06
-
D. Heckerman, "A Tutorial on Learning Bayesian Networks," Microsoft Res., Adv. Technol. Div., Redmond, WA, MSR-TR-95-06, 1995.
-
(1995)
A Tutorial on Learning Bayesian Networks
-
-
Heckerman, D.1
-
15
-
-
34547263982
-
-
Microsoft Bayesian. Network Editor and Toolkit (Online). Available: http://research.microsoft.com/adapt/MSBNx/.
-
Microsoft Bayesian. Network Editor and Toolkit (Online). Available: http://research.microsoft.com/adapt/MSBNx/.
-
-
-
-
16
-
-
30244555119
-
Inference in belief networks: A procedural guide
-
C. Huang, and A. Darwinche, "Inference in belief networks: a procedural guide," International Journal of Approximate Reasoning, vol. 15, no. 3, pp. 225-263, 1996.
-
(1996)
International Journal of Approximate Reasoning
, vol.15
, Issue.3
, pp. 225-263
-
-
Huang, C.1
Darwinche, A.2
-
17
-
-
84858102044
-
-
Online, Available
-
Norsys Bayes Net Library (Online). Available: http://www.no.rsys.com/ net_library.htm.
-
Norsys Bayes Net Library
-
-
-
18
-
-
0042496103
-
Learning Equivalence Classes of Bayesian Network Structures
-
D. Chickering, "Learning Equivalence Classes of Bayesian Network Structures," Journal of Machine Learning Research 2(2002), pp. 445-498, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.1
-
19
-
-
34547323269
-
-
D. Chickering, The WinMine Toolkit, Microsoft Res., Adv. Technol. Div., Redmond, WA, MSR-TR-2002-103, 2002.
-
D. Chickering, "The WinMine Toolkit," Microsoft Res., Adv. Technol. Div., Redmond, WA, MSR-TR-2002-103, 2002.
-
-
-
|