메뉴 건너뛰기




Volumn 54, Issue 2, 2013, Pages 307-322

Soft clustering - Fuzzy and rough approaches and their extensions and derivatives

Author keywords

Fuzzy c means; Hybrid soft clustering; k Means; Rough k means

Indexed keywords

COMPUTING CLUSTERS; FUZZY C MEAN; HYBRID CLUSTERING; K-MEANS; REAL-LIFE APPLICATIONS; ROUGH K-MEANS; SOFT CLUSTERING;

EID: 84873284300     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2012.10.003     Document Type: Article
Times cited : (166)

References (110)
  • 8
    • 49349121666 scopus 로고
    • Fuzzy partitions and relations
    • J.C. Bezdek, and J. Harris Fuzzy partitions and relations Fuzzy Sets and Systems 1 2 1978 111 127
    • (1978) Fuzzy Sets and Systems , vol.1 , Issue.2 , pp. 111-127
    • Bezdek, J.C.1    Harris, J.2
  • 9
    • 83455181893 scopus 로고    scopus 로고
    • Application of factor analysis and fuzzy c-means for classification of knowledge intensity in china's manufacturing industry
    • S. Bing, Application of factor analysis and fuzzy c-means for classification of knowledge intensity in china's manufacturing industry, in: International Conference on Management Science and Engineering (ICMSE), Rome, 2011, pp. 111-117.
    • (2011) International Conference on Management Science and Engineering (ICMSE), Rome , pp. 111-117
    • Bing, S.1
  • 10
    • 84961648876 scopus 로고    scopus 로고
    • Buying or browsing? An exploration of shopping orientations and online purchase intention
    • M. Brown, N. Pope, and K. Voges Buying or browsing? An exploration of shopping orientations and online purchase intention European Journal of Marketing 37 11 2003 1666 1684
    • (2003) European Journal of Marketing , vol.37 , Issue.11 , pp. 1666-1684
    • Brown, M.1    Pope, N.2    Voges, K.3
  • 12
    • 84864749213 scopus 로고    scopus 로고
    • Clustering path profiles on a website using rough k-means method
    • X. Cheng, and R. Wu Clustering path profiles on a website using rough k-means method Journal of Computational Information Systems 8 14 2012 6009 6016
    • (2012) Journal of Computational Information Systems , vol.8 , Issue.14 , pp. 6009-6016
    • Cheng, X.1    Wu, R.2
  • 14
    • 85032186546 scopus 로고    scopus 로고
    • Rough clustering approaches for dynamic environments
    • G. Peters, P. Lingras, D. Slezak, Y.Y. Yao, Advanced Information and Knowledge Processing Springer London
    • F. Crespo, G. Peters, and R. Weber Rough clustering approaches for dynamic environments G. Peters, P. Lingras, D. Slezak, Y.Y. Yao, Rough Sets: Selected Methods and Applications in Management and Engineering Advanced Information and Knowledge Processing 2012 Springer London 39 50
    • (2012) Rough Sets: Selected Methods and Applications in Management and Engineering , pp. 39-50
    • Crespo, F.1    Peters, G.2    Weber, R.3
  • 15
    • 11244353294 scopus 로고    scopus 로고
    • A methodology for dynamic data mining based on fuzzy clustering
    • DOI 10.1016/j.fss.2004.03.028, PII S016501140400140X
    • F. Crespo, and R. Weber A methodology for dynamic data mining based on fuzzy clustering Fuzzy Sets and Systems 150 2 2005 267 284 (Pubitemid 40056021)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 267-284
    • Crespo, F.1    Weber, R.2
  • 17
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • R.N. Davé Characterization and detection of noise in clustering Pattern Recognition Letters 12 11 1991 657 664
    • (1991) Pattern Recognition Letters , vol.12 , Issue.11 , pp. 657-664
    • Davé, R.N.1
  • 19
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means method for clustering microarray data
    • DOI 10.1093/bioinformatics/btg119
    • D. Dembele, and P. Kastner Fuzzy c-means method for clustering microarray data Bioinformatics 19 8 2003 973 980 (Pubitemid 36675818)
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 20
    • 84965172808 scopus 로고
    • A generalization of Bayesian inference
    • Harvard University, Department of Statistics
    • A.P. Dempster, A generalization of Bayesian inference, Technical Report20, Harvard University, Department of Statistics, 1967.
    • (1967) Technical Report20
    • Dempster, A.P.1
  • 25
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • J. Dunn A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters Journal of Cybernetics 3 3 1973 32 57
    • (1973) Journal of Cybernetics , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.1
  • 26
    • 77949269627 scopus 로고    scopus 로고
    • Application of k- and fuzzy c-means for color segmentation of thermal infrared breast images
    • M. EtehadTavakol, S. Sadr, and E.Y.K. Ng Application of k- and fuzzy c-means for color segmentation of thermal infrared breast images Journal of Medical Systems 34 1 2010 35 42
    • (2010) Journal of Medical Systems , vol.34 , Issue.1 , pp. 35-42
    • Etehadtavakol, M.1    Sadr, S.2    Ng, E.Y.K.3
  • 28
    • 0029112501 scopus 로고
    • Recurring local sequence motifs in proteins
    • K.F. Han, and D. Baker Recurring local sequence motifs in proteins Journal of Molecular Biology 251 1995 176 187
    • (1995) Journal of Molecular Biology , vol.251 , pp. 176-187
    • Han, K.F.1    Baker, D.2
  • 30
    • 0034765315 scopus 로고    scopus 로고
    • The application of fuzzy C-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites
    • DOI 10.1016/S1464-1895(01)00137-5, PII S1464189501001375
    • M. Hanesch, R. Scholgera, and M.J. Dekkersb The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy. 26 11-12 2001 885 891 (Pubitemid 33030744)
    • (2001) Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy , vol.26 , Issue.11-12 , pp. 885-891
    • Hanesch, M.1    Scholger, R.2    Dekkers, M.J.3
  • 31
    • 0002883144 scopus 로고
    • Concepts of probabilistic sets
    • K. Hirota Concepts of probabilistic sets Fuzzy Sets and Systems 5 1 1981 31 46
    • (1981) Fuzzy Sets and Systems , vol.5 , Issue.1 , pp. 31-46
    • Hirota, K.1
  • 32
    • 80052422181 scopus 로고    scopus 로고
    • Determination of the threshold value β of variable precision rough set by fuzzy algorithms
    • K.Y. Huang, T.H. Chang, and T.C. Chang Determination of the threshold value β of variable precision rough set by fuzzy algorithms International Journal of Approximate Reasoning 52 2011 1056 1072
    • (2011) International Journal of Approximate Reasoning , vol.52 , pp. 1056-1072
    • Huang, K.Y.1    Chang, T.H.2    Chang, T.C.3
  • 33
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A.K. Jain Data clustering: 50 years beyond k-means Pattern Recognition Letters 31 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 35
    • 84864983458 scopus 로고    scopus 로고
    • Evidential clustering or rough clustering: The choice is yours
    • of LNCS
    • M. Joshi, P. Lingras, Evidential clustering or rough clustering: The choice is yours, in: Rough Sets and Knowledge Technology, vol. 7414 of LNCS, 2012, pp. 123-128.
    • (2012) Rough Sets and Knowledge Technology , vol.7414 , pp. 123-128
    • Joshi, M.1    Lingras, P.2
  • 39
    • 0036722310 scopus 로고    scopus 로고
    • Integration of self-organizing feature map and K-means algorithm for market segmentation
    • DOI 10.1016/S0305-0548(01)00043-0, PII S0305054801000430
    • R.J. Kou, L.M. Ho, and C.M. Hu Integration of self-organizing feature map and k-means algorithm for market segmentation Computers & Operations Research 29 11 2002 1475 1493 (Pubitemid 34573192)
    • (2002) Computers and Operations Research , vol.29 , Issue.11 , pp. 1475-1493
    • Kuo, R.J.1    Ho, L.M.2    Hu, C.M.3
  • 42
    • 17144390929 scopus 로고    scopus 로고
    • Why hackers do what they do: Understanding motivation effort in free/open source software projects
    • MIT Sloan School of Management
    • K.R. Lakhani, R.G. Wolf, Why hackers do what they do: Understanding motivation effort in free/open source software projects, Working Paper 4425-03, MIT Sloan School of Management, 2003.
    • (2003) Working Paper 4425-03
    • Lakhani, K.R.1    Wolf, R.G.2
  • 44
    • 66349135301 scopus 로고    scopus 로고
    • Application of fuzzy c-means clustering in data analysis of metabolomics
    • X. Li, X. Lu, J. Tian, P. Gao, H. Kong, and G. Xu Application of fuzzy c-means clustering in data analysis of metabolomics Artificial Intelligence in Medicine 81 11 2009 4468 4475
    • (2009) Artificial Intelligence in Medicine , vol.81 , Issue.11 , pp. 4468-4475
    • Li, X.1    Lu, X.2    Tian, J.3    Gao, P.4    Kong, H.5    Xu, G.6
  • 45
    • 0035416470 scopus 로고    scopus 로고
    • Unsupervised rough set classification using GAs
    • DOI 10.1023/A:1011219918340
    • P. Lingras Unsupervised rough set classification using GAs Journal of Intelligent Information Systems 16 2001 215 228 (Pubitemid 32886813)
    • (2001) Journal of Intelligent Information Systems , vol.16 , Issue.3 , pp. 215-228
    • Lingras, P.1
  • 46
    • 38149094907 scopus 로고    scopus 로고
    • Applications of rough set based k-means, Kohonen SOM, GA clustering
    • P. Lingras Applications of rough set based k-means, Kohonen SOM, GA clustering Transactions on Rough Sets VII 2007 120 139
    • (2007) Transactions on Rough Sets VII , pp. 120-139
    • Lingras, P.1
  • 48
    • 18144396167 scopus 로고    scopus 로고
    • Temporal analysis of clusters of supermarket customers: Conventional versus interval set approach
    • DOI 10.1016/j.ins.2004.12.007, PII S0020025504003548
    • P. Lingras, M. Hogo, M. Snorek, and C. West Temporal analysis of clusters of supermarket customers: conventional versus interval set approach Information Sciences 172 2005 215 240 (Pubitemid 40612874)
    • (2005) Information Sciences , vol.172 , Issue.1-2 , pp. 215-240
    • Lingras, P.1    Hogo, M.2    Snorek, M.3    West, C.4
  • 51
    • 4544248169 scopus 로고    scopus 로고
    • Interval set clustering of web users with rough k-means
    • Department of Mathematics and Computer Science, St. Mary's University, Halifax, Canada
    • P. Lingras, C. West, Interval set clustering of web users with rough k-means, Tech. Rep. 2002-002, Department of Mathematics and Computer Science, St. Mary's University, Halifax, Canada, 2002.
    • (2002) Tech. Rep. 2002-002
    • Lingras, P.1    West, C.2
  • 53
    • 8344234993 scopus 로고    scopus 로고
    • Comparison of Conventional and Rough K-Means Clustering
    • Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
    • P. Lingras, R. Yan, and C. West Comparison of conventional and rough k-means clustering Proceedings RSFDGrC-9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing LNAI vol. 2639 2003 Springer-Verlag Berlin, Germany 130 137 (Pubitemid 36657945)
    • (2003) Lecture Notes In Computer Science , Issue.2639 , pp. 130-137
    • Lingras, P.1    Yan, R.2    West, C.3
  • 55
    • 83455237493 scopus 로고    scopus 로고
    • Belief c-means: An extension of fuzzy c-means algorithm in belief functions framework
    • Z.G. Liu, J. Dezert, G. Mercier, and Q. Pan Belief c-means: An extension of fuzzy c-means algorithm in belief functions framework Pattern Recognition Letters 33 2012 291 300
    • (2012) Pattern Recognition Letters , vol.33 , pp. 291-300
    • Liu, Z.G.1    Dezert, J.2    Mercier, G.3    Pan, Q.4
  • 56
    • 13244255357 scopus 로고    scopus 로고
    • Incremental genetic k-means algorithm and its application in gene expression data analysis
    • Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. Brown Incremental genetic k-means algorithm and its application in gene expression data analysis BMC Bioinformatics 5 2004 172
    • (2004) BMC Bioinformatics , vol.5 , pp. 172
    • Lu, Y.1    Lu, S.2    Fotouhi, F.3    Deng, Y.4    Brown, S.5
  • 57
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L.M. LeCam, J. Neyman (Eds.) Statistics. University of California Press, Berkeley and Los Angeles, CA
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in: L.M. LeCam, J. Neyman (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. I: Statistics. University of California Press, Berkeley and Los Angeles, CA, 1967, pp. 281-297.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 58
    • 36649023533 scopus 로고    scopus 로고
    • RFCM: A hybrid clustering algorithm using rough and fuzzy sets
    • P. Maji, and S.K. Pal RFCM: A hybrid clustering algorithm using rough and fuzzy sets Fundamenta Informaticae 80 4 2007 475 496 (Pubitemid 350196585)
    • (2007) Fundamenta Informaticae , vol.80 , Issue.4 , pp. 475-496
    • Maji, P.1    Pal, S.K.2
  • 59
    • 36749070903 scopus 로고    scopus 로고
    • Rough set based generalized fuzzy C-Means algorithm and quantitative indices
    • DOI 10.1109/TSMCB.2007.906578
    • P. Maji, and S.K. Pal Rough set based generalized fuzzy c-means algorithm and quantitative indices IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 37 6 2007 1529 1540 (Pubitemid 350201160)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.6 , pp. 1529-1540
    • Maji, P.1    Pal, S.K.2
  • 60
    • 58649105110 scopus 로고    scopus 로고
    • Maximum class separability for rough-fuzzy c-means based brain mr image segmentation
    • P. Maji, and S.K. Pal Maximum class separability for rough-fuzzy c-means based brain mr image segmentation Transactions on Rough Sets IX 2008 114 134
    • (2008) Transactions on Rough Sets IX , pp. 114-134
    • Maji, P.1    Pal, S.K.2
  • 62
    • 84856030764 scopus 로고    scopus 로고
    • Rough-fuzzy c-means for clustering microarray gene expression data
    • LNCS Springer Berlin
    • P. Maji, and S. Paul Rough-fuzzy c-means for clustering microarray gene expression data Perception and Machine Intelligence LNCS vol. 7143 2012 Springer Berlin
    • (2012) Perception and Machine Intelligence , vol.7143
    • Maji, P.1    Paul, S.2
  • 64
    • 0346216895 scopus 로고    scopus 로고
    • Clustering interval-valued proximity data using belief functions
    • DOI 10.1016/j.patrec.2003.09.008
    • M.H. Masson, and T. Denœux Clustering interval-valued data using belief functions Pattern Recognition Letters 25 2 2004 163 171 (Pubitemid 38003128)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.2 , pp. 163-171
    • Masson, M.-H.1    Denoeux, T.2
  • 65
    • 36749023291 scopus 로고    scopus 로고
    • ECM: An evidential version of the fuzzy c-means algorithm
    • DOI 10.1016/j.patcog.2007.08.014, PII S0031320307004062
    • M.H. Masson, and T. Denœux ECM: An evidential version of the fuzzy c-means algorithm Pattern Recognition 41 2008 1384 1397 (Pubitemid 350212969)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1384-1397
    • Masson, M.-H.1    Denoeux, T.2
  • 66
    • 67649090202 scopus 로고    scopus 로고
    • RECM: Relational evidential c-means algorithm
    • M.H. Masson, and T. Denœux RECM: Relational evidential c-means algorithm Pattern Recognition Letters 30 11 2009 1015 1026
    • (2009) Pattern Recognition Letters , vol.30 , Issue.11 , pp. 1015-1026
    • Masson, M.H.1    Denœux, T.2
  • 67
    • 33747602096 scopus 로고    scopus 로고
    • Soft transition from probabilistic to possibilistic fuzzy clustering
    • DOI 10.1109/TFUZZ.2006.876740
    • F. Masulli, and S. Rovetta Soft transition from probabilistic to possibilistic fuzzy clustering IEEE Transactions on Fuzzy Systems 14 4 2006 516 527 (Pubitemid 44263557)
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.4 , pp. 516-527
    • Masulli, F.1    Rovetta, S.2
  • 68
    • 0033735084 scopus 로고    scopus 로고
    • The fuzzy c+2-means: Solving the ambiguity rejection in clustering
    • M. Ménard, C. Demko, and P. Loonis The fuzzy c+2-means: solving the ambiguity rejection in clustering Pattern Recognition 33 7 2000 1219 1237
    • (2000) Pattern Recognition , vol.33 , Issue.7 , pp. 1219-1237
    • Ménard, M.1    Demko, C.2    Loonis, P.3
  • 69
    • 33746829948 scopus 로고    scopus 로고
    • Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms
    • DOI 10.1016/j.ejor.2005.03.039, PII S0377221705003863
    • S.A. Mingoti, and J.O. Lima Comparing som neural network with fuzzy c-means, k-means and traditional hierarchical clustering algorithms European Journal of Operational Research 174 2006 1742 1759 (Pubitemid 44177804)
    • (2006) European Journal of Operational Research , vol.174 , Issue.3 , pp. 1742-1759
    • Mingoti, S.A.1    Lima, J.O.2
  • 70
    • 4544352979 scopus 로고    scopus 로고
    • An evolutionary rough partitive clustering
    • S. Mitra An evolutionary rough partitive clustering Pattern Recognition Letters 25 2004 1439 1449
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1439-1449
    • Mitra, S.1
  • 74
    • 74449092532 scopus 로고    scopus 로고
    • Shadowed c-means: Integrating fuzzy and rough clustering
    • S. Mitra, W. Pedrycz, and B. Barman Shadowed c-means: Integrating fuzzy and rough clustering Pattern Recognition 43 2010 1282 1291
    • (2010) Pattern Recognition , vol.43 , pp. 1282-1291
    • Mitra, S.1    Pedrycz, W.2    Barman, B.3
  • 75
    • 0027047710 scopus 로고
    • Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships
    • I.O.A. Odeh, D.J. Chittleborough, and A.B. McBratney Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships Soil Science Society of America Journal 56 2 1990 505 516 (Pubitemid 23377221)
    • (1992) Soil Science Society of America Journal , vol.56 , Issue.2 , pp. 505-516
    • Odeh, I.O.A.1    McBratney, A.B.2    Chittleborough, D.J.3
  • 77
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • N.R. Pal, and J.C. Bezdek On cluster validity for the fuzzy c-means model IEEE Transactions on Fuzzy Systems 3 3 1995 370 379
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 79
    • 26844532803 scopus 로고    scopus 로고
    • A possibilistic fuzzy c-means clustering algorithm
    • DOI 10.1109/TFUZZ.2004.840099
    • N.R. Pal, K. Pal, J.M. Keller, and J.C. Bezdek A possibilistic fuzzy c-means clustering algorithm IEEE Transactions on Fuzzy Systems 13 4 2005 517 530 (Pubitemid 41461446)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.4 , pp. 517-530
    • Pal, N.R.1    Pal, K.2    Keller, J.M.3    Bezdek, J.C.4
  • 80
    • 0030142628 scopus 로고    scopus 로고
    • Conditional fuzzy C-means
    • DOI 10.1016/0167-8655(96)00027-X, PII S016786559600027X
    • W. Pedrycz Conditional fuzzy c-means Pattern Recognition Letters 17 6 1996 625 631 (Pubitemid 126384143)
    • (1996) Pattern Recognition Letters , vol.17 , Issue.6 , pp. 625-631
    • Pedrycz, W.1
  • 82
    • 0036885192 scopus 로고    scopus 로고
    • Collaborative fuzzy clustering
    • W. Pedrycz Collaborative fuzzy clustering Pattern Recognition Letters 23 14 2002 1675 1686
    • (2002) Pattern Recognition Letters , vol.23 , Issue.14 , pp. 1675-1686
    • Pedrycz, W.1
  • 83
    • 25844520574 scopus 로고    scopus 로고
    • Interpretation of clusters in the framework of shadowed sets
    • DOI 10.1016/j.patrec.2005.05.001, PII S0167865505001492
    • W. Pedrycz Interpretation of clusters in the framework of shadowed sets Pattern Recognition Letters 26 2005 2439 2449 (Pubitemid 41394300)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.15 , pp. 2439-2449
    • Pedrycz, W.1
  • 85
    • 58449116911 scopus 로고    scopus 로고
    • From fuzzy sets to shadowed sets: Interpretation and computing
    • W. Pedrycz From fuzzy sets to shadowed sets: Interpretation and computing International Journal of Intelligent Systems 24 1 2009 48 61
    • (2009) International Journal of Intelligent Systems , vol.24 , Issue.1 , pp. 48-61
    • Pedrycz, W.1
  • 86
    • 79953063112 scopus 로고    scopus 로고
    • Shadowed sets in the characterization of rough-fuzzy clustering
    • W. Pedrycz Shadowed sets in the characterization of rough-fuzzy clustering Pattern Recognition 44 8 2011 1738 1749
    • (2011) Pattern Recognition , vol.44 , Issue.8 , pp. 1738-1749
    • Pedrycz, W.1
  • 89
    • 33646419553 scopus 로고    scopus 로고
    • Some refinements of rough k-means
    • G. Peters Some refinements of rough k-means Pattern Recognition 39 2006 1481 1491
    • (2006) Pattern Recognition , vol.39 , pp. 1481-1491
    • Peters, G.1
  • 92
    • 84864759981 scopus 로고    scopus 로고
    • Dynamic rough clustering and its applications
    • G. Peters, R. Weber, and R. Nowatzke Dynamic rough clustering and its applications Applied Soft Computing 12 2012 3193 3207
    • (2012) Applied Soft Computing , vol.12 , pp. 3193-3207
    • Peters, G.1    Weber, R.2    Nowatzke, R.3
  • 94
    • 27844540779 scopus 로고    scopus 로고
    • Rough fuzzy set based scale space transforms and their use in image analysis
    • A. Petrosino, and G. Salvi Rough fuzzy set based scale space transforms and their use in image analysis International Journal of Approximate Reasoning 41 2006 212 228
    • (2006) International Journal of Approximate Reasoning , vol.41 , pp. 212-228
    • Petrosino, A.1    Salvi, G.2
  • 95
    • 0000470917 scopus 로고
    • Cluster analysis in marketing research: Review and suggestions for application
    • G. Punj, and D.W. Stewart Cluster analysis in marketing research: Review and suggestions for application Journal of Marketing Research 20 2 1983 134 148
    • (1983) Journal of Marketing Research , vol.20 , Issue.2 , pp. 134-148
    • Punj, G.1    Stewart, D.W.2
  • 96
    • 36148988076 scopus 로고    scopus 로고
    • K-means algorithm and its application for clustering companies listed in Zhejiang province
    • DOI 10.2495/DATA060041, Data Mining VII: Data, Text and Web Mining and their Business Applications
    • Y. Qian, K-means algorithm and its application for clustering companies listed in Zhejiang province, in: A. Zanasi, C. Brebbia, N. Ebecken (Eds.), Data Mining VII: Data, Text and Web Mining and their Business Applications. WIT Transactions on Information and Communication Technologies, Southampton, UK, 2006, pp. 35-44. (Pubitemid 350108031)
    • (2006) WIT Transactions on Information and Communication Technologies , vol.37 , pp. 35-44
    • Qian, Y.1
  • 98
    • 34248141805 scopus 로고    scopus 로고
    • Uncertain fuzzy clustering: Insights and recommendation
    • F.C.H. Rhee Uncertain fuzzy clustering: Insights and recommendation IEEE Computational Intelligence Magazine 2 1 2007 44 56
    • (2007) IEEE Computational Intelligence Magazine , vol.2 , Issue.1 , pp. 44-56
    • Rhee, F.C.H.1
  • 99
    • 78149241880 scopus 로고    scopus 로고
    • A simple and fast method to determine the parameters for fuzzy cmeans cluster analysis
    • V. Schwämmle, and N.O. Jensen A simple and fast method to determine the parameters for fuzzy cmeans cluster analysis Bioinformatics 26 2010 2841 2848
    • (2010) Bioinformatics , vol.26 , pp. 2841-2848
    • Schwämmle, V.1    Jensen, N.O.2
  • 102
    • 0006585767 scopus 로고
    • Selforganizing feature maps versus statistical clustering: A benchmark
    • University of Marburg, Germany
    • A. Ultsch, C. Vetter, Selforganizing feature maps versus statistical clustering: A benchmark, Tech. Rep. 9, Dept. of Mathematics and Computer Science, University of Marburg, Germany, 1994.
    • (1994) Tech. Rep. 9, Dept. of Mathematics and Computer Science
    • Ultsch, A.1    Vetter, C.2
  • 103
    • 85015666013 scopus 로고    scopus 로고
    • A refined rough k-means clustering with hybrid threshold
    • of LNCS
    • H. Wang, M. Zhou, A refined rough k-means clustering with hybrid threshold, in: Rough Sets and Current Trends in Computing, vol. 7413 of LNCS, 2012, pp. 26-35.
    • (2012) Rough Sets and Current Trends in Computing , vol.7413 , pp. 26-35
    • Wang, H.1    Zhou, M.2
  • 104
    • 0001702254 scopus 로고
    • Cluster validity for fuzzy clustering algorithms
    • M. Windham Cluster validity for fuzzy clustering algorithms Fuzzy Sets and Systems 5 1981 177 185
    • (1981) Fuzzy Sets and Systems , vol.5 , pp. 177-185
    • Windham, M.1
  • 105
    • 80052781450 scopus 로고    scopus 로고
    • Analysis of parameter selections for fuzzy c-means
    • K.L. Wu Analysis of parameter selections for fuzzy c-means Pattern Recognition 45 2012 407 415
    • (2012) Pattern Recognition , vol.45 , pp. 407-415
    • Wu, K.L.1
  • 106
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Transactions on Neural Networks 16 3 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 110
    • 26644466306 scopus 로고    scopus 로고
    • Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property
    • DOI 10.1109/TNB.2005.853667
    • W. Zhong, G. Altun, R. Harrison, P.C. Tai, and Y. Pan Improved k-means clustering algorithm for exploring local protein sequence motifs representing common structural property IEEE Transactions on NanoBioscience 4 3 2005 255 265 (Pubitemid 41441416)
    • (2005) IEEE Transactions on Nanobioscience , vol.4 , Issue.3 , pp. 255-265
    • Zhong, W.1    Altun, G.2    Harrison, R.3    Tai, P.C.4    Pan, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.