메뉴 건너뛰기




Volumn 12, Issue 10, 2012, Pages 3193-3207

Dynamic rough clustering and its applications

Author keywords

Changing data structures; Dynamic data mining; Rough k means clustering

Indexed keywords

BUYING BEHAVIOR; CLUSTER ALGORITHMS; DATA SETS; DYNAMIC CLUSTERING; DYNAMIC DATA MINING; DYNAMIC ENVIRONMENTS; REAL WORLD DATA; REAL-LIFE APPLICATIONS; ROUGH CLUSTERING; ROUGH K-MEANS; UNCERTAINTY MODELING; UNDERLYING DYNAMICS;

EID: 84864759981     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.05.015     Document Type: Article
Times cited : (49)

References (52)
  • 1
    • 70350248529 scopus 로고    scopus 로고
    • Dynamic data mining
    • 2nd edition IGI Global Hershey, USA
    • R. Weber Dynamic data mining Encyclopedia of Data Warehousing and Mining 2nd edition 2009 IGI Global Hershey, USA pp. 722-728
    • (2009) Encyclopedia of Data Warehousing and Mining , pp. 722-728
    • Weber, R.1
  • 2
    • 84864780110 scopus 로고    scopus 로고
    • Dynamic clustering with soft computing
    • 10.1002/widm.1050
    • G. Peters, and R. Weber Dynamic clustering with soft computing WIREs Data Mining and Knowledge Discovery 2 3 2012 226 236 10.1002/widm.1050
    • (2012) WIREs Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 226-236
    • Peters, G.1    Weber, R.2
  • 3
    • 11244353294 scopus 로고    scopus 로고
    • A methodology for dynamic data mining based on fuzzy clustering
    • DOI 10.1016/j.fss.2004.03.028, PII S016501140400140X
    • F. Crespo, and R. Weber A methodology for dynamic data mining based on fuzzy clustering Fuzzy Sets and Systems 150 2005 267 284 (Pubitemid 40056021)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 267-284
    • Crespo, F.1    Weber, R.2
  • 5
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • DOI 10.1016/j.ins.2006.06.003, PII S0020025506001484
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Information Sciences 177 1 2007 3 27 10.1016/j.ins.2006.06.003 (Pubitemid 44556698)
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 7
    • 77952582116 scopus 로고    scopus 로고
    • Fuzzy-rough sets for information measures and selection of relevant genes from microarray data
    • P. Maji, and S.K. Pal Fuzzy-rough sets for information measures and selection of relevant genes from microarray data IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 3 2010 741 752
    • (2010) IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics , vol.40 , Issue.3 , pp. 741-752
    • Maji, P.1    Pal, S.K.2
  • 8
    • 79954514337 scopus 로고    scopus 로고
    • Fuzzy-rough discriminative feature selection and classification algorithm, with application to microarray and image datasets
    • P. Kumar, P. Vadakkepat, and l.A. Poh Fuzzy-rough discriminative feature selection and classification algorithm, with application to microarray and image datasets Applied Soft Computing 11 2011 3429 3440
    • (2011) Applied Soft Computing , vol.11 , pp. 3429-3440
    • Kumar, P.1    Vadakkepat, P.2    Poh, L.A.3
  • 10
    • 4544248169 scopus 로고    scopus 로고
    • Interval set clustering of web users with rough k-means
    • Department of Mathematics and Computer Science, St. Mary's University, Halifax, Canada
    • P. Lingras, C. West, Interval set clustering of web users with rough k-means, Tech. Rep. 2002-002, Department of Mathematics and Computer Science, St. Mary's University, Halifax, Canada, 2002.
    • (2002) Tech. Rep. 2002-002
    • Lingras, P.1    West, C.2
  • 12
    • 11144312947 scopus 로고    scopus 로고
    • Interval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets
    • P. Lingras, M. Hogo, and M. Snorek Interval set clustering of web users using modified Kohonen self-organizing maps based on the properties of rough sets Web Intelligence and Agent Systems 2 3 2004 217 225 (Pubitemid 40963314)
    • (2004) Web Intelligence and Agent Systems , vol.2 , Issue.3 , pp. 217-225
    • Lingras, P.1    Hogo, M.2    Snorek, M.3
  • 13
    • 50949122131 scopus 로고    scopus 로고
    • Applications of rough set based k-means, Kohonen SOM, GA clustering
    • P. Lingras Applications of rough set based k-means, Kohonen SOM, GA clustering Transactions on Rough Sets VII 2007 120 139
    • (2007) Transactions on Rough Sets , vol.7 , pp. 120-139
    • Lingras, P.1
  • 14
    • 4544352979 scopus 로고    scopus 로고
    • An evolutionary rough partitive clustering
    • S. Mitra An evolutionary rough partitive clustering Pattern Recognition Letters 25 2004 1439 1449
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1439-1449
    • Mitra, S.1
  • 15
    • 33646419553 scopus 로고    scopus 로고
    • Some refinements of rough k-means
    • G. Peters Some refinements of rough k-means Pattern Recognition 39 2006 1481 1491
    • (2006) Pattern Recognition , vol.39 , pp. 1481-1491
    • Peters, G.1
  • 21
    • 79955426098 scopus 로고    scopus 로고
    • A class of dynamic rough partitive algorithms
    • 10.1002/int.20483
    • G. Peters, and R. Weber A class of dynamic rough partitive algorithms International Journal of Intelligent Systems 26 6 2011 540 554 10.1002/int.20483
    • (2011) International Journal of Intelligent Systems , vol.26 , Issue.6 , pp. 540-554
    • Peters, G.1    Weber, R.2
  • 22
    • 50149098949 scopus 로고    scopus 로고
    • Special issue on soft computing for dynamic data mining
    • W. Pedrycz, and R. Weber Special issue on soft computing for dynamic data mining Applied Soft Computing 8 4 2008 1281 1282
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1281-1282
    • Pedrycz, W.1    Weber, R.2
  • 24
    • 0005150228 scopus 로고    scopus 로고
    • Dynamic fuzzy data analysis based on similarity between functions
    • PII S0165011498003376
    • A. Joentgen, L. Mikenina, R. Weber, and H.-J. Zimmermann Dynamic fuzzy data analysis based on similarity between functions Fuzzy Sets and Systems 105 1999 81 90 (Pubitemid 129523990)
    • (1999) Fuzzy Sets and Systems , vol.105 , Issue.1 , pp. 81-90
    • Joentgen, A.1    Mikenina, L.2    Weber, R.3    Zimmermann, H.-J.4
  • 25
    • 85015196509 scopus 로고
    • Rough sets and fuzzy sets
    • (short communication)
    • Z. Pawlak Rough sets and fuzzy sets Fuzzy Sets and Systems 17 1985 99 102 (short communication)
    • (1985) Fuzzy Sets and Systems , vol.17 , pp. 99-102
    • Pawlak, Z.1
  • 27
    • 0032147655 scopus 로고    scopus 로고
    • A comparative study of fuzzy sets and rough sets
    • Y.Y. Yao A comparative study of fuzzy sets and rough sets Information Sciences 109 1998 227 242
    • (1998) Information Sciences , vol.109 , pp. 227-242
    • Yao, Y.Y.1
  • 28
    • 74449092532 scopus 로고    scopus 로고
    • Shadowed c-means: Integrating fuzzy and rough clustering
    • S. Mitra, W. Pedrycz, and B. Barman Shadowed c-means: integrating fuzzy and rough clustering Pattern Recognition 43 2010 1282 1291
    • (2010) Pattern Recognition , vol.43 , pp. 1282-1291
    • Mitra, S.1    Pedrycz, W.2    Barman, B.3
  • 29
    • 79953063112 scopus 로고    scopus 로고
    • Shadowed sets in the characterization of rough-fuzzy clustering
    • J. Zhou, W. Pedrycz, and D. Miao Shadowed sets in the characterization of rough-fuzzy clustering Pattern Recognition 44 8 2011 1738 1749
    • (2011) Pattern Recognition , vol.44 , Issue.8 , pp. 1738-1749
    • Zhou, J.1    Pedrycz, W.2    Miao, D.3
  • 30
    • 17644391302 scopus 로고
    • The dynamic cluster method in non-hierarchical clustering
    • E. Diday The dynamic cluster method in non-hierarchical clustering International Journal of Parallel Programming 2 1973 61 88
    • (1973) International Journal of Parallel Programming , vol.2 , pp. 61-88
    • Diday, E.1
  • 31
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • (special issue on data analysis and mining)
    • G. Karypis, E. Han, and V. Kumar Chameleon: a hierarchical clustering algorithm using dynamic modeling IEEE Computer 32 1999 68 75 (special issue on data analysis and mining)
    • (1999) IEEE Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 33
    • 0005260601 scopus 로고    scopus 로고
    • Evolutionary and adaptive synthesis methods
    • Cambridge University Press Cambridge, UK
    • C. Lee, L. Ma, and E. Antonsson Evolutionary and adaptive synthesis methods Formal Engineering Design Synthesis 2001 Cambridge University Press Cambridge, UK pp. 270-320
    • (2001) Formal Engineering Design Synthesis , pp. 270-320
    • Lee, C.1    Ma, L.2    Antonsson, E.3
  • 34
    • 0032595163 scopus 로고    scopus 로고
    • A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms
    • R. Krishnapuram, and J. Kim A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms IEEE Transactions on Fuzzy Systems 7 4 1999 453 461
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.4 , pp. 453-461
    • Krishnapuram, R.1    Kim, J.2
  • 35
    • 70449646963 scopus 로고    scopus 로고
    • Online phishing classification using adversarial data mining and signaling games
    • G. L'Huillier, R. Weber, and N. Figueroa Online phishing classification using adversarial data mining and signaling games SIGKDD Explorations 11 2 2009 92 99
    • (2009) SIGKDD Explorations , vol.11 , Issue.2 , pp. 92-99
    • L'Huillier, G.1    Weber, R.2    Figueroa, N.3
  • 36
    • 0037889892 scopus 로고    scopus 로고
    • Reduction of complexity in scenario analysis by means of dynamic fuzzy data analysis
    • P. Hofmeister, A. Joentgen, L. Mikenina, R. Weber, and H.-J. Zimmermann Reduction of complexity in scenario analysis by means of dynamic fuzzy data analysis OR Spektrum 22 3 2000 403 420
    • (2000) OR Spektrum , vol.22 , Issue.3 , pp. 403-420
    • Hofmeister, P.1    Joentgen, A.2    Mikenina, L.3    Weber, R.4    Zimmermann, H.-J.5
  • 37
    • 11244286295 scopus 로고    scopus 로고
    • Matryoshka: A HMM based temporal data clustering methodology for modeling system dynamics
    • C. Li, G. Biswas, M. Dale, and P. Dale Matryoshka: a HMM based temporal data clustering methodology for modeling system dynamics Intelligent Data Analysis 6 3 2001 281 308
    • (2001) Intelligent Data Analysis , vol.6 , Issue.3 , pp. 281-308
    • Li, C.1    Biswas, G.2    Dale, M.3    Dale, P.4
  • 38
    • 0032287374 scopus 로고    scopus 로고
    • Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions
    • PII S1083441998092498
    • S. Abe Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 28 1998 869 876 (Pubitemid 128748039)
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.28 , Issue.6 , pp. 869-876
    • Abe, S.1
  • 39
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. Kasabov, and Q. Song DENFIS: dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2 2002 144 154 (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 40
    • 50149106733 scopus 로고    scopus 로고
    • Dynamic data assigning assessment clustering of streaming data
    • O. Georgieva, and F. Klawonn Dynamic data assigning assessment clustering of streaming data Applied Soft Computing 8 4 2008 1305 1313
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1305-1313
    • Georgieva, O.1    Klawonn, F.2
  • 43
    • 18144396167 scopus 로고    scopus 로고
    • Temporal analysis of clusters of supermarket customers: Conventional versus interval set approach
    • DOI 10.1016/j.ins.2004.12.007, PII S0020025504003548
    • P. Lingras, M. Hogo, M. Snorek, and C. West Temporal analysis of clusters of supermarket customers: conventional versus interval set approach Information Sciences 172 1-2 2005 215 240 (Pubitemid 40612874)
    • (2005) Information Sciences , vol.172 , Issue.1-2 , pp. 215-240
    • Lingras, P.1    Hogo, M.2    Snorek, M.3    West, C.4
  • 45
    • 0001702254 scopus 로고
    • Cluster validity for fuzzy clustering algorithms
    • M. Windham Cluster validity for fuzzy clustering algorithms Fuzzy Sets and Systems 5 1981 177 185
    • (1981) Fuzzy Sets and Systems , vol.5 , pp. 177-185
    • Windham, M.1
  • 48
    • 18144388681 scopus 로고    scopus 로고
    • Toward a generalized theory of uncertainty (GTU)- An outline
    • DOI 10.1016/j.ins.2005.01.017, PII S002002550500054X
    • L. Zadeh Toward a generalized theory of uncertainty (GTU) an outline Information Sciences 172 2005 1 40 (Pubitemid 40612866)
    • (2005) Information Sciences , vol.172 , Issue.1-2 , pp. 1-40
    • Zadeh, L.A.1
  • 49
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • I. Düntscha, and G. Gedigac Uncertainty measures of rough set prediction Artificial Intelligence 106 1 1998 109 137
    • (1998) Artificial Intelligence , vol.106 , Issue.1 , pp. 109-137
    • Düntscha, I.1    Gedigac, G.2
  • 50
    • 33746727564 scopus 로고    scopus 로고
    • Roughness bounds in rough set operations
    • DOI 10.1016/j.ins.2006.02.009, PII S0020025506000429
    • Y. Yang, and R. John Roughness bounds in rough set operations Information Sciences 176 21 2006 3256 3267 (Pubitemid 44163571)
    • (2006) Information Sciences , vol.176 , Issue.21 , pp. 3256-3267
    • Yang, Y.1    John, R.2
  • 52
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi Optimization by simulated annealing Science 220 4598 1983 671 680
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.