메뉴 건너뛰기




Volumn 2, Issue 1, 2012, Pages 29-59

Robust clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; STATISTICS;

EID: 84873252175     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.49     Document Type: Review
Times cited : (22)

References (136)
  • 2
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch DC. Survey of clustering algorithms. IEEE Trans Neural Netw 2005, 16:645-678.
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.C.2
  • 6
    • 49749129645 scopus 로고    scopus 로고
    • Highbreakdown robust multivariate methods
    • Hubert M, Rousseeuw PJ, van Aelst S. Highbreakdown robust multivariate methods. Stat Sci 2008, 23:92-119.
    • (2008) Stat Sci , vol.23 , pp. 92-119
    • Hubert, M.1    Rousseeuw, P.J.2    van Aelst, S.3
  • 7
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: a new data clustering algorithm and its applications
    • Zhang T, Ramakrishnan R, Livny M. BIRCH: a new data clustering algorithm and its applications. Data Min Knowl Discov 1997, 1:141-182.
    • (1997) Data Min Knowl Discov , vol.1 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 8
    • 0035279319 scopus 로고    scopus 로고
    • CURE: an efficient clustering algorithm for large databases
    • Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. Inform Syst 2001, 26:35-58.
    • (2001) Inform Syst , vol.26 , pp. 35-58
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: a robust clustering algorithm for categorical attributes
    • Guha S, Rastogi R, Shim K. ROCK: a robust clustering algorithm for categorical attributes. Inform Syst 2000, 25:345-366.
    • (2000) Inform Syst , vol.25 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 10
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: hierarchical clustering using dynamic modeling
    • Karypis G, Han E-H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer 1999, 32:68-75.
    • (1999) Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 11
    • 0014060964 scopus 로고
    • A clustering technique for summarizing multivariate data
    • Ball G, Hall D. A clustering technique for summarizing multivariate data. Behav Sci 1967, 12:153-155.
    • (1967) Behav Sci , vol.12 , pp. 153-155
    • Ball, G.1    Hall, D.2
  • 14
    • 34250645957 scopus 로고    scopus 로고
    • Fuzzy shell cluster analysis
    • Della Riccia G, Lenz H-J, Kruse R, eds. Berlin: Springer;
    • Klawonn F, Kruse R, Timm H. Fuzzy shell cluster analysis. In: Della Riccia G, Lenz H-J, Kruse R, eds. Learning, Networks and Statistics. Berlin: Springer; 1997, 105-120.
    • (1997) Learning, Networks and Statistics , pp. 105-120
    • Klawonn, F.1    Kruse, R.2    Timm, H.3
  • 17
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • Dav́e RN. Characterization and detection of noise in clustering. Pattern Recognit Lett 1991, 12:657-664.
    • (1991) Pattern Recognit Lett , vol.12 , pp. 657-664
    • Dav́e, R.N.1
  • 21
    • 33845711639 scopus 로고    scopus 로고
    • A novel approach to noise clustering for outlier detection
    • Rehm F, Klawonn F, Kruse R. A novel approach to noise clustering for outlier detection. Soft Comput 2007, 11:489-494.
    • (2007) Soft Comput , vol.11 , pp. 489-494
    • Rehm, F.1    Klawonn, F.2    Kruse, R.3
  • 24
    • 33750284976 scopus 로고    scopus 로고
    • Possibility theory and statistical reasoning
    • Dubois D. Possibility theory and statistical reasoning. Comput Stat Data Anal 2006, 51:47-69.
    • (2006) Comput Stat Data Anal , vol.51 , pp. 47-69
    • Dubois, D.1
  • 25
    • 0030214781 scopus 로고    scopus 로고
    • The possibilistic cmeans algorithm: insights and recommendations
    • Krishnapuram R, Keller JM. The possibilistic cmeans algorithm: insights and recommendations. IEEE Trans Fuzzy Syst 1996, 4:385-393.
    • (1996) IEEE Trans Fuzzy Syst , vol.4 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.M.2
  • 27
    • 33747602096 scopus 로고    scopus 로고
    • Soft transition from probabilistic to possibilistic fuzzy clustering
    • Masulli F, Rovetta S. Soft transition from probabilistic to possibilistic fuzzy clustering. IEEE Trans Fuzzy Syst 2006, 14:516-527.
    • (2006) IEEE Trans Fuzzy Syst , vol.14 , pp. 516-527
    • Masulli, F.1    Rovetta, S.2
  • 31
    • 0002779251 scopus 로고
    • L1-norm based fuzzy clustering
    • Jajuga K. L1-norm based fuzzy clustering. Fuzzy Sets Syst 1991, 39:43-50.
    • (1991) Fuzzy Sets Syst , vol.39 , pp. 43-50
    • Jajuga, K.1
  • 32
    • 0033281059 scopus 로고    scopus 로고
    • Fuzzy order statistics and their application to fuzzy clustering
    • Kersten PR. Fuzzy order statistics and their application to fuzzy clustering. IEEE Trans Fuzzy Syst 1999, 7:708-712.
    • (1999) IEEE Trans Fuzzy Syst , vol.7 , pp. 708-712
    • Kersten, P.R.1
  • 33
    • 0034298140 scopus 로고    scopus 로고
    • Generalized fuzzy cmeans clustering strategies using Lp norm distances
    • Hathaway RJ, Bezdek JC, Hu Y. Generalized fuzzy cmeans clustering strategies using Lp norm distances. IEEE Trans Fuzzy Syst 2000, 8:576-582.
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , pp. 576-582
    • Hathaway, R.J.1    Bezdek, J.C.2    Hu, Y.3
  • 34
    • 0029723348 scopus 로고    scopus 로고
    • A robust clustering algorithm based on competitive agglomeration and soft rejection of outliers
    • San Francisco, CA
    • Frigui H, Krishnapuram R. A robust clustering algorithm based on competitive agglomeration and soft rejection of outliers. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA; 1996, 550-555.
    • (1996) Proc. IEEE Conference on Computer Vision and Pattern Recognition. , pp. 550-555
    • Frigui, H.1    Krishnapuram, R.2
  • 35
    • 0036779072 scopus 로고    scopus 로고
    • Alternative c-means clustering algorithms
    • Wu KL, Yang MS. Alternative c-means clustering algorithms. Pattern Recognit 2002, 35: 2267-2278.
    • (2002) Pattern Recognit , vol.35 , pp. 2267-2278
    • Wu, K.L.1    Yang, M.S.2
  • 37
    • 0037534035 scopus 로고    scopus 로고
    • Towards a robust fuzzy clustering
    • Łȩski J. Towards a robust fuzzy clustering. Fuzzy Sets Syst 2003, 137:215-233.
    • (2003) Fuzzy Sets Syst , vol.137 , pp. 215-233
    • Łȩski, J.1
  • 39
    • 84902828762 scopus 로고
    • Equivariant, monotonic 50% breakdown estimators
    • Bassett GW. Equivariant, monotonic, 50% breakdown estimators. Am Stat 1991, 45:135-137.
    • (1991) Am Stat , vol.45 , pp. 135-137
    • Bassett, G.W.1
  • 40
    • 0043226699 scopus 로고    scopus 로고
    • Application of the least trimmed squares technique to prototypebased clustering
    • Kim J, Krishnapuram R, Dav́e RN. Application of the least trimmed squares technique to prototypebased clustering. Pattern Recognit Lett 1996, 17:633- 64l.
    • (1996) Pattern Recognit Lett , vol.17 , pp. 633-664
    • Kim, J.1    Krishnapuram, R.2    Dav́e, R.N.3
  • 45
    • 0028667335 scopus 로고
    • NERF c-means: non-Euclidean relational fuzzy clustering
    • Hathaway RJ, Bezdek JC. NERF c-means: non-Euclidean relational fuzzy clustering. Pattern Recognit 1994, 27:429-437.
    • (1994) Pattern Recognit , vol.27 , pp. 429-437
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 46
    • 0036904021 scopus 로고    scopus 로고
    • Robust fuzzy clustering of relational data
    • Dav́e RN, Sen S. Robust fuzzy clustering of relational data. IEEE Trans Fuzzy Syst 2002, 10:713-727.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , pp. 713-727
    • Dav́e, R.N.1    Sen, S.2
  • 52
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C, Raftery AE. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 2002, 97:611-631.
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 53
    • 0030242069 scopus 로고    scopus 로고
    • Gaussian mixture density modeling, decomposition, and applications
    • Zhuang X, Huang Y, Palaniappan K. Gaussian mixture density modeling, decomposition, and applications. IEEE Trans Image Process 1996, 5:1293-1302.
    • (1996) IEEE Trans Image Process , vol.5 , pp. 1293-1302
    • Zhuang, X.1    Huang, Y.2    Palaniappan, K.3
  • 55
    • 0031493778 scopus 로고    scopus 로고
    • Matr ́an C. Trimmed k-means: an attempt to robustify quantizers
    • Cuesta-Albertos JA, Gordaliza A, Matr ́an C. Trimmed k-means: an attempt to robustify quantizers. Ann Stat 1997, 25:553-576.
    • (1997) Ann Stat , vol.25 , pp. 553-576
    • Cuesta-Albertos, J.A.1    Gordaliza, A.2
  • 56
    • 47649122556 scopus 로고    scopus 로고
    • Robust estimation in the normal mixture model based on robust clustering
    • Cuesta-Albertos JA, Matŕan C, Mayo-Iscar A. Robust estimation in the normal mixture model based on robust clustering. J R Stat Soc 2008, 70:779-802.
    • (2008) J R Stat Soc , vol.70 , pp. 779-802
    • Cuesta-Albertos, J.A.1    Matŕan, C.2    Mayo-Iscar, A.3
  • 58
    • 1842714898 scopus 로고    scopus 로고
    • Robust mixture modelling using multivariate t-distribution with missing information
    • Wang H, Zhang Q, Luo B, Wei S. Robust mixture modelling using multivariate t-distribution with missing information. Pattern Recognit Lett 2004, 25:701- 710.
    • (2004) Pattern Recognit Lett , vol.25 , pp. 701-710
    • Wang, H.1    Zhang, Q.2    Luo, B.3    Wei, S.4
  • 59
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t-distribution
    • Peel D, McLachlan GJ. Robust mixture modelling using the t-distribution. Stat Comput 2000, 10:339- 348.
    • (2000) Stat Comput , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 60
    • 0036568162 scopus 로고    scopus 로고
    • Robust clustering bydeterministic agglomeration EM of mixtures of multivariate tdistributions
    • Shoham S. Robust clustering bydeterministic agglomeration EM of mixtures of multivariate tdistributions. Pattern Recognit 2002, 35:1127- 1142.
    • (2002) Pattern Recognit , vol.35 , pp. 1127-1142
    • Shoham, S.1
  • 62
    • 77955850743 scopus 로고    scopus 로고
    • Robust cluster analysis via mixture models
    • McLachlan GJ, Ng SK, Bean R. Robust cluster analysis via mixture models. Austrian J Stat 2006, 35:157- 174.
    • (2006) Austrian J Stat , vol.35 , pp. 157-174
    • McLachlan, G.J.1    Ng, S.K.2    Bean, R.3
  • 63
  • 64
    • 32844462745 scopus 로고    scopus 로고
    • Feature selection in robust clustering based on Laplacemixture
    • Cord A, Ambroise C, Cocquerez JP. Feature selection in robust clustering based on Laplacemixture. Pattern Recognit Lett 2005, 27:627-635.
    • (2005) Pattern Recognit Lett , vol.27 , pp. 627-635
    • Cord, A.1    Ambroise, C.2    Cocquerez, J.P.3
  • 65
    • 38349073064 scopus 로고    scopus 로고
    • Robust L1 principal component analysis and its Bayesian variational inference
    • Gao J. Robust L1 principal component analysis and its Bayesian variational inference. Neural Comput 2008, 20:555-572.
    • (2008) Neural Comput , vol.20 , pp. 555-572
    • Gao, J.1
  • 69
    • 40049096286 scopus 로고    scopus 로고
    • Wasp swarm optimization of the cmeans clustering model
    • Runkler TA. Wasp swarm optimization of the cmeans clustering model. Int J Intell Syst 2008, 23:269-285.
    • (2008) Int J Intell Syst , vol.23 , pp. 269-285
    • Runkler, T.A.1
  • 70
    • 30544448155 scopus 로고    scopus 로고
    • Ant colony optimization of clustering models
    • Runkler TA. Ant colony optimization of clustering models. Int J Intell Syst 2005, 20:1233-1261.
    • (2005) Int J Intell Syst , vol.20 , pp. 1233-1261
    • Runkler, T.A.1
  • 71
    • 23144460461 scopus 로고    scopus 로고
    • Di Marzo Serugendo G, Karegeorgos A, Rana OF, Zambonelli F, eds. Engineering Self Organizing Systems. Berlin/Heidelberg: Springer-Verlag
    • Handl J, Knowles J, Dorigo M. Strategies for the increased robustness of ant-based clustering. In: Di Marzo Serugendo G, Karegeorgos A, Rana OF, Zambonelli F, eds. Engineering Self Organizing Systems. Berlin/Heidelberg: Springer-Verlag; 2004, 90- 104.
    • (2004) Strategies for the increased robustness of ant-based clustering , pp. 90-104
    • Handl, J.1    Knowles, J.2    Dorigo, M.3
  • 74
  • 78
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • Chang H, Yeung D-Y. Robust path-based spectral clustering. Pattern Recognit 2008, 41:191-203.
    • (2008) Pattern Recognit , vol.41 , pp. 191-203
    • Chang, H.1    Yeung, D.Y.2
  • 81
    • 0041877699 scopus 로고    scopus 로고
    • A new kernel-based fuzzy clustering approach: support vector clustering with cell growing
    • Chiang J-H, Hao P-Y. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE Trans Fuzzy Syst 2003, 11:518-527.
    • (2003) IEEE Trans Fuzzy Syst , vol.11 , pp. 518-527
    • Chiang, J.H.1    Hao, P.Y.2
  • 82
    • 50649124911 scopus 로고    scopus 로고
    • Proc. 11th International Conference on Computer Vision. Rio de Janeiro, Brazil
    • Li Z, Liu J, Chen S, Tang X. Noise robust spectral clustering. In: Proc. 11th International Conference on Computer Vision. Rio de Janeiro, Brazil; 2007.
    • (2007) Noise robust spectral clustering
    • Li, Z.1    Liu, J.2    Chen, S.3    Tang, X.4
  • 83
  • 84
    • 0025235219 scopus 로고
    • ART3: hierarchical search using chemical transmitters in self-organizing pattern recognition architectures
    • Carpenter G, Grossberg S. ART3: hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Netw 1990, 3:129- 152.
    • (1990) Neural Netw , vol.3 , pp. 129-152
    • Carpenter, G.1    Grossberg, S.2
  • 89
    • 0347409033 scopus 로고    scopus 로고
    • Competitive algorithms for the clustering of noisy data
    • Yang TN, Wang SD. Competitive algorithms for the clustering of noisy data. Fuzzy Sets Syst 2004, 141:281-299.
    • (2004) Fuzzy Sets Syst , vol.141 , pp. 281-299
    • Yang, T.N.1    Wang, S.D.2
  • 91
    • 33847457966 scopus 로고
    • An examination of the effect of six types of error perturbation on fifteen clustering algorithms
    • 1980
    • Milligan GW. 1980. An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika 1980, 45:325-342.
    • (1980) Psychometrika , vol.45 , pp. 325-342
    • Milligan, G.W.1
  • 92
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the K-Means algorithm
    • Pena JM, Lozano JA, Larranaga P. An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognit Lett 1999, 20:1027-1040.
    • (1999) Pattern Recognit Lett , vol.20 , pp. 1027-1040
    • Pena, J.M.1    Lozano, J.A.2    Larranaga, P.3
  • 94
    • 0037118554 scopus 로고    scopus 로고
    • Unsupervised fuzzy clustering with multicenter clusters
    • Tao CW. Unsupervised fuzzy clustering with multicenter clusters. Fuzzy Sets Syst 2002, 128:305- 322.
    • (2002) Fuzzy Sets Syst , vol.128 , pp. 305-322
    • Tao, C.W.1
  • 95
    • 0036905922 scopus 로고    scopus 로고
    • Fuzzy clustering with volume prototypes and adaptive cluster merging
    • Kaymak U, Setnes M. Fuzzy clustering with volume prototypes and adaptive cluster merging. IEEE Trans Fuzzy Syst 2002, 10:705-712.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , pp. 705-712
    • Kaymak, U.1    Setnes, M.2
  • 96
    • 0033117357 scopus 로고    scopus 로고
    • On finding the number of clusters
    • Kothari R, Pitts D. On finding the number of clusters. Pattern Recognit Lett 1999, 20:405-416.
    • (1999) Pattern Recognit Lett , vol.20 , pp. 405-416
    • Kothari, R.1    Pitts, D.2
  • 97
    • 23844528211 scopus 로고    scopus 로고
    • Cluster center initialization algorithm for K-means clustering
    • Khan SS, Ahmad A. Cluster center initialization algorithm for K-means clustering. Pattern Recognit Lett 2004, 25:1293-1302.
    • (2004) Pattern Recognit Lett , vol.25 , pp. 1293-1302
    • Khan, S.S.1    Ahmad, A.2
  • 99
    • 0028482531 scopus 로고
    • Robust shape detection using fuzzy clustering: practical applications
    • Dav́e RN, Fu T. Robust shape detection using fuzzy clustering: practical applications. Fuzzy Sets Syst 1994, 65:161-185.
    • (1994) Fuzzy Sets Syst , vol.65 , pp. 161-185
    • Dav́e, R.N.1    Fu, T.2
  • 100
    • 0032650370 scopus 로고    scopus 로고
    • A robust competitive clustering algorithmwith applications in computer vision
    • Frigui H, Krishnapuram R. A robust competitive clustering algorithmwith applications in computer vision. IEEE Trans Pattern Anal Mach Intell 1999, 21:450- 465.
    • (1999) IEEE Trans Pattern Anal Mach Intell , vol.21 , pp. 450-465
    • Frigui, H.1    Krishnapuram, R.2
  • 102
    • 34247170075 scopus 로고    scopus 로고
    • A robust deterministic annealing algorithm for data clustering
    • Yang XL, Song Q, Wu YL. A robust deterministic annealing algorithm for data clustering. Data Knowl Eng 2007, 62:84-100.
    • (2007) Data Knowl Eng , vol.62 , pp. 84-100
    • Yang, X.L.1    Song, Q.2    Wu, Y.L.3
  • 104
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L, Arabie P. Comparing partitions. J Classif 1985, 2:193-218.
    • (1985) J Classif , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 105
    • 62549163396 scopus 로고    scopus 로고
    • Papers on normalization, variable selection, classification or clustering of microarray data
    • Rocke DM, Ideker T, Troyanskaya O, Quackenbush J, Dopazo J. Papers on normalization, variable selection, classification or clustering of microarray data. Bioinformatics 2009, 25:701-702.
    • (2009) Bioinformatics , vol.25 , pp. 701-702
    • Rocke, D.M.1    Ideker, T.2    Troyanskaya, O.3    Quackenbush, J.4    Dopazo, J.5
  • 106
    • 77951276538 scopus 로고    scopus 로고
    • A robust fuzzy local information c-means clustering algorithm
    • Krinidis S, Chatzis V. A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 2010, 19:1328-1337.
    • (2010) IEEE Trans Image Process , vol.19 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2
  • 107
    • 0032070619 scopus 로고    scopus 로고
    • Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
    • Tolias Y, Panas S. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Trans Syst Man Cybern 1998, 28:359-369.
    • (1998) IEEE Trans Syst Man Cybern , vol.28 , pp. 359-369
    • Tolias, Y.1    Panas, S.2
  • 108
    • 0036107314 scopus 로고    scopus 로고
    • Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms
    • Yang M, Hu YJ, Lin K, Lin CC. Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn Resonance Imaging 2002, 20:173-179.
    • (2002) Magn Resonance Imaging , vol.20 , pp. 173-179
    • Yang, M.1    Hu, Y.J.2    Lin, K.3    Lin, C.C.4
  • 109
    • 0036680705 scopus 로고    scopus 로고
    • A generic fuzzy rule based image segmentation algorithm
    • Karmakar G, Dooley L. A generic fuzzy rule based image segmentation algorithm. Pattern Recognit Lett 2002, 23:1215-1227.
    • (2002) Pattern Recognit Lett , vol.23 , pp. 1215-1227
    • Karmakar, G.1    Dooley, L.2
  • 110
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy c-means algorithm for bias field estimation and segmentation ofMRI data
    • Ahmed M, Yamany S, Mohamed N, Farag A, Moriarty T. A modified fuzzy c-means algorithm for bias field estimation and segmentation ofMRI data. IEEE Trans Med Imaging 2002, 21:193-199.
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 193-199
    • Ahmed, M.1    Yamany, S.2    Mohamed, N.3    Farag, A.4    Moriarty, T.5
  • 111
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • Pham D. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Lett 1999, 20:57-68.
    • (1999) Pattern Recognit Lett , vol.20 , pp. 57-68
    • Pham, D.1
  • 112
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernelinduced distance measure
    • Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernelinduced distance measure. IEEE Trans Syst Man Cybern 2004, 34:1907-1916.
    • (2004) IEEE Trans Syst Man Cybern , vol.34 , pp. 1907-1916
    • Chen, S.1    Zhang, D.2
  • 113
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy cmeans clustering algorithms incorporating local information for image segmentation
    • Cai W, Chen S, Zhang D. Fast and robust fuzzy cmeans clustering algorithms incorporating local information for image segmentation. Pattern Recognit 2007, 40:825-838.
    • (2007) Pattern Recognit , vol.40 , pp. 825-838
    • Cai, W.1    Chen, S.2    Zhang, D.3
  • 114
  • 115
    • 53749103356 scopus 로고    scopus 로고
    • Robust fuzzy clustering-based image segmentation
    • Yang Z, Chung F-L, Shitong W. Robust fuzzy clustering-based image segmentation. Appl Soft Comput 2009, 9:80-84.
    • (2009) Appl Soft Comput , vol.9 , pp. 80-84
    • Yang, Z.1    Chung, F.L.2    Shitong, W.3
  • 116
    • 0037308031 scopus 로고    scopus 로고
    • Improved fuzzy partitions for fuzzy regression models
    • Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models. Int J Approx Reason 2003, 32:85-102.
    • (2003) Int J Approx Reason , vol.32 , pp. 85-102
    • Hoppner, F.1    Klawonn, F.2
  • 117
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu X et al. Top 10 algorithms in data mining. Knowl Inform Syst 2008, 14:1-37.
    • (2008) Knowl Inform Syst , vol.14 , pp. 1-37
    • Wu, X.1
  • 118
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • Kogan J, Nicholas C, Teboulle M, eds. Berlin/Heidelberg: Springer-Verlag
    • Berkhin P. A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle M, eds. Grouping Multidimensional Data. Berlin/Heidelberg: Springer-Verlag; 2006, 25-72.
    • (2006) Grouping Multidimensional Data , pp. 25-72
    • Berkhin, P.1
  • 119
    • 60549110650 scopus 로고    scopus 로고
    • Robust clustering analysis for the management of self-monitoring distributed systems
    • Quiroz A, Gnanasambandam N, Parashar M, Sharma N. Robust clustering analysis for the management of self-monitoring distributed systems. Cluster Comput 2009, 12:73-85.
    • (2009) Cluster Comput , vol.12 , pp. 73-85
    • Quiroz, A.1    Gnanasambandam, N.2    Parashar, M.3    Sharma, N.4
  • 124
    • 62949096162 scopus 로고    scopus 로고
    • Chameleon based on clustering feature tree and its application in customer segmentation
    • Li J, Wang K, Xu L. Chameleon based on clustering feature tree and its application in customer segmentation. Ann Operat Res 2009, 168:225-245.
    • (2009) Ann Operat Res , vol.168 , pp. 225-245
    • Li, J.1    Wang, K.2    Xu, L.3
  • 125
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: finding a match for a biomedical application
    • Andreopoulos B, An A, Wang X, Schroeder M. A roadmap of clustering algorithms: finding a match for a biomedical application. Brief Bioinform 2009, 10:297-214.
    • (2009) Brief Bioinform , vol.10 , pp. 214-297
    • Andreopoulos, B.1    An, A.2    Wang, X.3    Schroeder, M.4
  • 126
    • 0037958764 scopus 로고    scopus 로고
    • Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically
    • Bickel DR. Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically. Bioinformatics 2003, 19:818- 824.
    • (2003) Bioinformatics , vol.19 , pp. 818-824
    • Bickel, D.R.1
  • 127
    • 84942597099 scopus 로고    scopus 로고
    • DHC: a density-based hierarchical clustering method for time series gene expression data
    • Bethesda, MD
    • Jiang D, Pei J, Zhang A. DHC: a density-based hierarchical clustering method for time series gene expression data. In: Proc. 3rd Symposium on Bioinformatics and Bioengineering. Bethesda, MD; 2003, 393-400.
    • (2003) Proc. 3rd Symposium on Bioinformatics and Bioengineering. , pp. 393-400
    • Jiang, D.1    Pei, J.2    Zhang, A.3
  • 128
    • 33744745603 scopus 로고    scopus 로고
    • An evolutionary clustering algorithm for gene expression microarray data analysis
    • Ma PCH, Chan KCC, Yao X, Chiu DKY. An evolutionary clustering algorithm for gene expression microarray data analysis. IEEE Trans Evolut Comput 2006, 10:296-314.
    • (2006) IEEE Trans Evolut Comput , vol.10 , pp. 296-314
    • Ma, P.C.H.1    Chan, K.C.C.2    Yao, X.3    Chiu, D.K.Y.4
  • 129
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: algorithms and applications
    • Knorr EM, Ng RT, Tucakov V. Distance-based outliers: algorithms and applications. VLDB J 2000, 8:237-253.
    • (2000) VLDB J , vol.8 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 130
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large datasets
    • Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large datasets. Sigmoid Record 2000, 29:427-438.
    • (2000) Sigmoid Record , vol.29 , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 133
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge V, Austin J. A survey of outlier detection methodologies. Artif Intell Rev 2004, 22:85-126.
    • (2004) Artif Intell Rev , vol.22 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 135
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognit Lett 2010, 31:651-666.
    • (2010) Pattern Recognit Lett , vol.31 , pp. 651-666
    • Jain, A.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.