메뉴 건너뛰기




Volumn 41, Issue 4, 2008, Pages 1384-1397

ECM: An evidential version of the fuzzy c-means algorithm

Author keywords

Belief functions; Cluster validity; Clustering; Dempster Shafer theory; Evidence theory; Robustness; Unsupervised learning

Indexed keywords

BAYESIAN NETWORKS; CLUSTERING ALGORITHMS; DATA PROCESSING; FUZZY SETS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 36749023291     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.08.014     Document Type: Article
Times cited : (353)

References (34)
  • 2
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters
    • Dunn J.C. A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J. Cybern. (1974) 32-57
    • (1974) J. Cybern. , pp. 32-57
    • Dunn, J.C.1
  • 4
    • 0027595430 scopus 로고
    • A possibilistic approach to clustering
    • Krishnapuram R., and Keller J. A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1 2 (1993) 98-110
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.2 , pp. 98-110
    • Krishnapuram, R.1    Keller, J.2
  • 6
    • 0000586827 scopus 로고
    • Clustering relational data containing noise and outliers
    • Davé R.N. Clustering relational data containing noise and outliers. Pattern Recognition Lett. 12 (1991) 657-664
    • (1991) Pattern Recognition Lett. , vol.12 , pp. 657-664
    • Davé, R.N.1
  • 8
    • 0031644831 scopus 로고    scopus 로고
    • S. Sen, R.N. Davé, Clustering relational data containing noise and outliers, In: FUZZ'IEEE 98, 1998, pp. 1411-1416.
  • 9
  • 12
    • 0001099497 scopus 로고    scopus 로고
    • The transferable Belief Model for quantified belief representation
    • Gabbay D.M., and Smets P. (Eds), Kluwer Academic Publishers, Dordrecht
    • Smets P. The transferable Belief Model for quantified belief representation. In: Gabbay D.M., and Smets P. (Eds). Hanbook of Defeasible Reasoning and Uncertainty Management Systems vol. 1 (1998), Kluwer Academic Publishers, Dordrecht 267-301
    • (1998) Hanbook of Defeasible Reasoning and Uncertainty Management Systems , vol.1 , pp. 267-301
    • Smets, P.1
  • 14
    • 0028406490 scopus 로고
    • The Transferable Belief Model
    • Smets P., and Kennes R. The Transferable Belief Model. Artif. Intell. 66 (1994) 191-243
    • (1994) Artif. Intell. , vol.66 , pp. 191-243
    • Smets, P.1    Kennes, R.2
  • 15
    • 0025434991 scopus 로고
    • The combination of evidence in the Transferable Belief Model
    • Smets P. The combination of evidence in the Transferable Belief Model. IEEE Trans. Pattern Anal. Mach. Intell. 12 5 (1990) 447-458
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , Issue.5 , pp. 447-458
    • Smets, P.1
  • 16
    • 33644864393 scopus 로고    scopus 로고
    • On the plausibility transformation method for translating belief function models to probability models
    • Cobb B.R., and Shenoy P.P. On the plausibility transformation method for translating belief function models to probability models. Int. J. Approximate Reasoning 41 3 (2006) 314-330
    • (2006) Int. J. Approximate Reasoning , vol.41 , Issue.3 , pp. 314-330
    • Cobb, B.R.1    Shenoy, P.P.2
  • 17
    • 9644266682 scopus 로고    scopus 로고
    • Decision making in the TBM: the necessity of the pignistic transformation
    • Smets P. Decision making in the TBM: the necessity of the pignistic transformation. Int. J. Approximate Reasoning 38 2 (2005) 133-147
    • (2005) Int. J. Approximate Reasoning , vol.38 , Issue.2 , pp. 133-147
    • Smets, P.1
  • 18
    • 0038869667 scopus 로고    scopus 로고
    • On the normalization of fuzzy belief structure
    • Yager R.R. On the normalization of fuzzy belief structure. Int. J. Approximate Reasoning 14 (1996) 27-153
    • (1996) Int. J. Approximate Reasoning , vol.14 , pp. 27-153
    • Yager, R.R.1
  • 19
    • 33750289748 scopus 로고    scopus 로고
    • Data analysis with fuzzy clustering methods
    • Döring C., Lesot M.-J., and Kruse R. Data analysis with fuzzy clustering methods. Comput. Data Anal. 51 (2006) 192-214
    • (2006) Comput. Data Anal. , vol.51 , pp. 192-214
    • Döring, C.1    Lesot, M.-J.2    Kruse, R.3
  • 20
    • 0030212286 scopus 로고    scopus 로고
    • Comments on a possibilistic approach to clustering
    • Barni M., Cappellini V., and Mecocci A. Comments on a possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 4 3 (1996) 393-396
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.3 , pp. 393-396
    • Barni, M.1    Cappellini, V.2    Mecocci, A.3
  • 21
    • 0030214781 scopus 로고    scopus 로고
    • The possibilistic c-means algorithm: insights and recommendations
    • Krishnapuram R., and Keller J. The possibilistic c-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4 3 (1996) 385-393
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.3 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.2
  • 22
    • 0346216895 scopus 로고    scopus 로고
    • Clustering interval-valued data using belief functions
    • Masson M.-H., and Denœux T. Clustering interval-valued data using belief functions. Pattern Recognition Lett. 25 2 (2004) 163-171
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.2 , pp. 163-171
    • Masson, M.-H.1    Denœux, T.2
  • 24
    • 0033735084 scopus 로고    scopus 로고
    • The fuzzy c + 2 means: solving the ambiguity rejection in clustering
    • Ménard M., Demko C., and Loonis P. The fuzzy c + 2 means: solving the ambiguity rejection in clustering. Pattern Recognition 33 (2000) 1219-1237
    • (2000) Pattern Recognition , vol.33 , pp. 1219-1237
    • Ménard, M.1    Demko, C.2    Loonis, P.3
  • 25
    • 0000881417 scopus 로고
    • Numerical classification of proximity data with assignment measure
    • Windham M.P. Numerical classification of proximity data with assignment measure. J. Classification 2 (1985) 157-172
    • (1985) J. Classification , vol.2 , pp. 157-172
    • Windham, M.P.1
  • 26
    • 0035416470 scopus 로고    scopus 로고
    • Unsupervised rough set classification using GAs
    • Lingras P. Unsupervised rough set classification using GAs. J. Intelligent Inf. Syst. 16 (2001) 215-228
    • (2001) J. Intelligent Inf. Syst. , vol.16 , pp. 215-228
    • Lingras, P.1
  • 27
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • Bezdek J.C. Cluster validity with fuzzy sets. J. Cybern. 3 (1974) 58-73
    • (1974) J. Cybern. , vol.3 , pp. 58-73
    • Bezdek, J.C.1
  • 28
    • 0030141444 scopus 로고    scopus 로고
    • Validating fuzzy partition obtained through c-shell clustering
    • Davé R.N. Validating fuzzy partition obtained through c-shell clustering. Pattern Recognition Lett. 17 (1996) 613-623
    • (1996) Pattern Recognition Lett. , vol.17 , pp. 613-623
    • Davé, R.N.1
  • 29
    • 38249034837 scopus 로고
    • Uniqueness of information measure in the theory of evidence
    • Ramer A. Uniqueness of information measure in the theory of evidence. Fuzzy Sets and Systems 24 (1987) 183-196
    • (1987) Fuzzy Sets and Systems , vol.24 , pp. 183-196
    • Ramer, A.1
  • 31
    • 0002263953 scopus 로고
    • The irises of the Gasp peninsula
    • Anderson E. The irises of the Gasp peninsula. Bull. Am. Iris Soc. 59 (1935) 2-5
    • (1935) Bull. Am. Iris Soc. , vol.59 , pp. 2-5
    • Anderson, E.1
  • 32
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 7 (1936) 179-188
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 33
    • 0030192238 scopus 로고    scopus 로고
    • Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account
    • Bloch I. Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account. Pattern Recognition Lett. 17 8 (1996) 905-919
    • (1996) Pattern Recognition Lett. , vol.17 , Issue.8 , pp. 905-919
    • Bloch, I.1
  • 34
    • 42649116431 scopus 로고    scopus 로고
    • I. Bloch, Defining belief functions using mathematical morphology-application to image fusion under imprecision, Int. J. Approximate Reasoning, 2007, in press, doi:10.1016/j.ijar.2007.07.008.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.