메뉴 건너뛰기




Volumn 320, Issue , 2013, Pages 159-169

A predictive mathematical model of the DNA damage G2 checkpoint

Author keywords

Cell cycle

Indexed keywords

CELL PROTEIN; CYCLIN B1; CYCLIN DEPENDENT KINASE 1; DNA; EPITOPE; PROTEIN MYT1; UNCLASSIFIED DRUG;

EID: 84873278852     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2012.12.011     Document Type: Article
Times cited : (11)

References (38)
  • 1
    • 0035449355 scopus 로고    scopus 로고
    • Cell cycle checkpoint signaling through the ATM and ATR kinases
    • Abraham R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001, 15:2177-2196.
    • (2001) Genes Dev. , vol.15 , pp. 2177-2196
    • Abraham, R.T.1
  • 2
    • 0033613221 scopus 로고    scopus 로고
    • A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system
    • Aguda B.D. A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc. Nat. Acad. Sci. U.S.A. 1999, 96:11352-11357.
    • (1999) Proc. Nat. Acad. Sci. U.S.A. , vol.96 , pp. 11352-11357
    • Aguda, B.D.1
  • 3
    • 10244219918 scopus 로고    scopus 로고
    • BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains
    • Blinov M.L., Faeder J.R., Goldstein B., Hlavacek W.S. BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 2004, 20:3289-3291.
    • (2004) Bioinformatics , vol.20 , pp. 3289-3291
    • Blinov, M.L.1    Faeder, J.R.2    Goldstein, B.3    Hlavacek, W.S.4
  • 7
    • 65649154507 scopus 로고    scopus 로고
    • Rule-based modeling of biochemical systems with BioNetGen
    • Faeder J.R., Blinov M.L., Hlavacek W.S. Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 2009, 500:113-167.
    • (2009) Methods Mol. Biol. , vol.500 , pp. 113-167
    • Faeder, J.R.1    Blinov, M.L.2    Hlavacek, W.S.3
  • 8
    • 76049094188 scopus 로고    scopus 로고
    • Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle
    • Gerard C., Goldbeter A. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc. Nat. Acad. Sci. U.S.A. 2009, 106:21643-21648.
    • (2009) Proc. Nat. Acad. Sci. U.S.A. , vol.106 , pp. 21643-21648
    • Gerard, C.1    Goldbeter, A.2
  • 9
    • 36749022214 scopus 로고    scopus 로고
    • The DNA damage response: ten years after
    • Harper J.W., Elledge S.J. The DNA damage response: ten years after. Mol. Cell 2007, 28:739-745.
    • (2007) Mol. Cell , vol.28 , pp. 739-745
    • Harper, J.W.1    Elledge, S.J.2
  • 10
    • 0028568315 scopus 로고
    • Cell cycle control and cancer. [Review] [101 refs]
    • Hartwell L.H., Kastan M.B. Cell cycle control and cancer. [Review] [101 refs]. Science 1994, 266:1821-1828.
    • (1994) Science , vol.266 , pp. 1821-1828
    • Hartwell, L.H.1    Kastan, M.B.2
  • 13
    • 2942666592 scopus 로고    scopus 로고
    • Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase
    • Hutchins J.R., Clarke P.R. Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase. Cell Cycle 2004, 3:41-45.
    • (2004) Cell Cycle , vol.3 , pp. 41-45
    • Hutchins, J.R.1    Clarke, P.R.2
  • 14
    • 0032102860 scopus 로고    scopus 로고
    • Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis
    • Juan G., Traganos F., James W.M., Ray J.M., Roberge M., Sauve D.M., Anderson H., Darzynkiewicz Z. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry 1998, 32:71-77.
    • (1998) Cytometry , vol.32 , pp. 71-77
    • Juan, G.1    Traganos, F.2    James, W.M.3    Ray, J.M.4    Roberge, M.5    Sauve, D.M.6    Anderson, H.7    Darzynkiewicz, Z.8
  • 16
    • 33344476097 scopus 로고    scopus 로고
    • DNA damage checkpoints in mammals
    • Niida H., Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis 2006, 21:3-9.
    • (2006) Mutagenesis , vol.21 , pp. 3-9
    • Niida, H.1    Nakanishi, M.2
  • 17
    • 0033629383 scopus 로고    scopus 로고
    • Cell cycle regulation by the Cdc25 phosphatase family
    • Nilsson I., Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 2000, 4:107-114.
    • (2000) Prog. Cell Cycle Res. , vol.4 , pp. 107-114
    • Nilsson, I.1    Hoffmann, I.2
  • 18
    • 34347381069 scopus 로고    scopus 로고
    • Irreversible cell-cycle transitions are due to systems-level feedback
    • Novak B., Tyson J.J., Gyorffy B., Csikasz-Nagy A. Irreversible cell-cycle transitions are due to systems-level feedback. Nat. Cell Biol. 2007, 9:724-728.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 724-728
    • Novak, B.1    Tyson, J.J.2    Gyorffy, B.3    Csikasz-Nagy, A.4
  • 20
    • 0032485826 scopus 로고    scopus 로고
    • Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions
    • Novak B., Csikasz-Nagy A., Gyorffy B., Chen K., Tyson J.J. Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem. 1998, 72:185-200.
    • (1998) Biophys. Chem. , vol.72 , pp. 185-200
    • Novak, B.1    Csikasz-Nagy, A.2    Gyorffy, B.3    Chen, K.4    Tyson, J.J.5
  • 21
    • 0345700833 scopus 로고    scopus 로고
    • Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2
    • Pomerening J.R., Sontag E.D., Ferrell J.E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 2003, 5:346-351.
    • (2003) Nat. Cell Biol. , vol.5 , pp. 346-351
    • Pomerening, J.R.1    Sontag, E.D.2    Ferrell, J.E.3
  • 22
    • 0037302108 scopus 로고    scopus 로고
    • Regulation of the mammalian cell cycle: a model of the G1-to-S transition
    • Qu Z., Weiss J.N., MacLellan W.R. Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am. J. Physiol. Cell Physiol. 2003, 284:C349-C364.
    • (2003) Am. J. Physiol. Cell Physiol. , vol.284
    • Qu, Z.1    Weiss, J.N.2    MacLellan, W.R.3
  • 26
    • 33646907207 scopus 로고    scopus 로고
    • Control of the G2/M transition
    • Stark G.R., Taylor W.R. Control of the G2/M transition. Mol. Biotechnol. 2006, 32:227-248.
    • (2006) Mol. Biotechnol. , vol.32 , pp. 227-248
    • Stark, G.R.1    Taylor, W.R.2
  • 28
    • 33749053416 scopus 로고    scopus 로고
    • Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein
    • Touny L.H., Banerjee P.P. Identification of both Myt-1 and Wee-1 as necessary mediators of the p21-independent inactivation of the cdc-2/cyclin B1 complex and growth inhibition of TRAMP cancer cells by genistein. Prostate 2006, 66:1542-1555.
    • (2006) Prostate , vol.66 , pp. 1542-1555
    • Touny, L.H.1    Banerjee, P.P.2
  • 29
    • 0036256260 scopus 로고    scopus 로고
    • Plk1 promotes nuclear translocation of human Cdc25C during prophase
    • Toyoshima-Morimoto F., Taniguchi E., Nishida E. Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 2002, 3:341-348.
    • (2002) EMBO Rep. , vol.3 , pp. 341-348
    • Toyoshima-Morimoto, F.1    Taniguchi, E.2    Nishida, E.3
  • 30
    • 50849121703 scopus 로고    scopus 로고
    • Temporal organization of the cell cycle
    • Tyson J.J., Novak B. Temporal organization of the cell cycle. Curr. Biol. 2008, 18:R759-R768.
    • (2008) Curr. Biol. , vol.18
    • Tyson, J.J.1    Novak, B.2
  • 32
    • 16244408025 scopus 로고    scopus 로고
    • Coupling of human circadian and cell cycles by the timeless protein
    • Unsal-Kacmaz K., Mullen T.E., Kaufmann W.K., Sancar A. Coupling of human circadian and cell cycles by the timeless protein. Mol. Cell. Biol. 2005, 25:3109-3116.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3109-3116
    • Unsal-Kacmaz, K.1    Mullen, T.E.2    Kaufmann, W.K.3    Sancar, A.4
  • 33
    • 18344366048 scopus 로고    scopus 로고
    • Getting in and out of mitosis with Polo-like kinase-1
    • van Vugt M.A., Medema R.H. Getting in and out of mitosis with Polo-like kinase-1. Oncogene 2005, 24:2844-2859.
    • (2005) Oncogene , vol.24 , pp. 2844-2859
    • van Vugt, M.A.1    Medema, R.H.2
  • 34
    • 77953570936 scopus 로고    scopus 로고
    • Cell cycle re-entry mechanisms after DNA damage checkpoints: Giving it some gas to shut off the breaks!
    • van Vugt M.A., Yaffe M.B. Cell cycle re-entry mechanisms after DNA damage checkpoints: Giving it some gas to shut off the breaks!. Cell Cycle 2010, 9:2097-2101.
    • (2010) Cell Cycle , vol.9 , pp. 2097-2101
    • van Vugt, M.A.1    Yaffe, M.B.2
  • 36
    • 16544392882 scopus 로고    scopus 로고
    • Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis
    • Wang Y., Decker S.J., Sebolt-Leopold J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol. Ther. 2004, 3:305-313.
    • (2004) Cancer Biol. Ther. , vol.3 , pp. 305-313
    • Wang, Y.1    Decker, S.J.2    Sebolt-Leopold, J.3
  • 37
    • 0032705499 scopus 로고    scopus 로고
    • The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression
    • Pt 19
    • Wells N.J., Watanabe N., Tokusumi T., Jiang W., Verdecia M.A., Hunter T. The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G(2)/M progression. J. Cell Sci. 1999, 112:3361-3371. Pt 19.
    • (1999) J. Cell Sci. , vol.112 , pp. 3361-3371
    • Wells, N.J.1    Watanabe, N.2    Tokusumi, T.3    Jiang, W.4    Verdecia, M.A.5    Hunter, T.6
  • 38
    • 33744798493 scopus 로고    scopus 로고
    • Linking cell division to cell growth in a spatiotemporal model of the cell cycle
    • Yang L., Han Z., Robb MacLellan W., Weiss J.N., Qu Z. Linking cell division to cell growth in a spatiotemporal model of the cell cycle. J. Theor. Biol. 2006, 241:120-133.
    • (2006) J. Theor. Biol. , vol.241 , pp. 120-133
    • Yang, L.1    Han, Z.2    Robb MacLellan, W.3    Weiss, J.N.4    Qu, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.