-
1
-
-
77449093660
-
Role of the RNA polymerase trigger loop in catalysis and pausing
-
Zhang J., Palangat M., Landick R. Role of the RNA polymerase trigger loop in catalysis and pausing. Nat. Struct. Mol. Biol. 2010, 17:99-104.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 99-104
-
-
Zhang, J.1
Palangat, M.2
Landick, R.3
-
2
-
-
67650938441
-
RNA polymerase active center: the molecular engine of transcription
-
Nudler E. RNA polymerase active center: the molecular engine of transcription. Annu. Rev. Biochem. 2009, 78:335-361.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 335-361
-
-
Nudler, E.1
-
3
-
-
34447513771
-
Structural basis for substrate loading in bacterial RNA polymerase
-
Vassylyev D.G., Vassylyeva M.N., Zhang J., Palangat M., Artsimovitch I., Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 2007, 448:163-168.
-
(2007)
Nature
, vol.448
, pp. 163-168
-
-
Vassylyev, D.G.1
Vassylyeva, M.N.2
Zhang, J.3
Palangat, M.4
Artsimovitch, I.5
Landick, R.6
-
4
-
-
33751235874
-
Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis
-
Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., Kornberg R.D. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006, 127:941-954.
-
(2006)
Cell
, vol.127
, pp. 941-954
-
-
Wang, D.1
Bushnell, D.A.2
Westover, K.D.3
Kaplan, C.D.4
Kornberg, R.D.5
-
5
-
-
84870983295
-
Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase
-
Kireeva M.L., Opron K., Seibold S.A., Domecq C., Cukier R.I., Coulombe B., Kashlev M., Burton Z.F. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. BMC Biophys. 2012, 5:11.
-
(2012)
BMC Biophys.
, vol.5
, pp. 11
-
-
Kireeva, M.L.1
Opron, K.2
Seibold, S.A.3
Domecq, C.4
Cukier, R.I.5
Coulombe, B.6
Kashlev, M.7
Burton, Z.F.8
-
6
-
-
78049347876
-
RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation
-
Feig M., Burton Z.F. RNA polymerase II with open and closed trigger loops: active site dynamics and nucleic acid translocation. Biophys. J. 2010, 99:2577-2586.
-
(2010)
Biophys. J.
, vol.99
, pp. 2577-2586
-
-
Feig, M.1
Burton, Z.F.2
-
7
-
-
77449145343
-
RNA polymerase II flexibility during translocation from normal mode analysis
-
Feig M., Burton Z.F. RNA polymerase II flexibility during translocation from normal mode analysis. Proteins 2010, 78:434-446.
-
(2010)
Proteins
, vol.78
, pp. 434-446
-
-
Feig, M.1
Burton, Z.F.2
-
8
-
-
0035827332
-
Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution
-
Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001, 292:1876-1882.
-
(2001)
Science
, vol.292
, pp. 1876-1882
-
-
Gnatt, A.L.1
Cramer, P.2
Fu, J.3
Bushnell, D.A.4
Kornberg, R.D.5
-
9
-
-
12944324227
-
A ratchet mechanism of transcription elongation and its control
-
Bar-Nahum G., Epshtein V., Ruckenstein A.E., Rafikov R., Mustaev A., Nudler E. A ratchet mechanism of transcription elongation and its control. Cell 2005, 120:183-193.
-
(2005)
Cell
, vol.120
, pp. 183-193
-
-
Bar-Nahum, G.1
Epshtein, V.2
Ruckenstein, A.E.3
Rafikov, R.4
Mustaev, A.5
Nudler, E.6
-
10
-
-
57249108333
-
Bridge helix and trigger loop perturbations generate superactive RNA polymerases
-
Tan L., Wiesler S., Trzaska D., Carney H.C., Weinzierl R.O. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J. Biol. 2008, 7:40.
-
(2008)
J. Biol.
, vol.7
, pp. 40
-
-
Tan, L.1
Wiesler, S.2
Trzaska, D.3
Carney, H.C.4
Weinzierl, R.O.5
-
11
-
-
77958579653
-
The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain
-
Weinzierl R.O. The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain. BMC Biol. 2010, 8:134.
-
(2010)
BMC Biol.
, vol.8
, pp. 134
-
-
Weinzierl, R.O.1
-
12
-
-
79551482308
-
Cation-pi interactions induce kinking of a molecular hinge in the RNA polymerase bridge-helix domain
-
Heindl H., Greenwell P., Weingarten N., Kiss T., Terstyanszky G., Weinzierl R.O. Cation-pi interactions induce kinking of a molecular hinge in the RNA polymerase bridge-helix domain. Biochem. Soc. Trans. 2011, 39:31-35.
-
(2011)
Biochem. Soc. Trans.
, vol.39
, pp. 31-35
-
-
Heindl, H.1
Greenwell, P.2
Weingarten, N.3
Kiss, T.4
Terstyanszky, G.5
Weinzierl, R.O.6
-
13
-
-
77955653271
-
Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase
-
Seibold S.A., Singh B.N., Zhang C., Kireeva M., Domecq C., Bouchard A., Nazione A.M., Feig M., Cukier R.I., Coulombe B., Kashlev M., Hampsey M., Burton Z.F. Conformational coupling, bridge helix dynamics and active site dehydration in catalysis by RNA polymerase. Biochim. Biophys. Acta 2010, 1799:575-587.
-
(2010)
Biochim. Biophys. Acta
, vol.1799
, pp. 575-587
-
-
Seibold, S.A.1
Singh, B.N.2
Zhang, C.3
Kireeva, M.4
Domecq, C.5
Bouchard, A.6
Nazione, A.M.7
Feig, M.8
Cukier, R.I.9
Coulombe, B.10
Kashlev, M.11
Hampsey, M.12
Burton, Z.F.13
-
14
-
-
84858225724
-
The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement
-
Weinzierl R.O. The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement. Archaea 2011, 2011:608385.
-
(2011)
Archaea
, vol.2011
, pp. 608385
-
-
Weinzierl, R.O.1
-
15
-
-
84869783692
-
RNA polymerase stalls in a post-translocated register and can hyper-translocate
-
Nedialkov Y.A., Nudler E., Burton Z.F. RNA polymerase stalls in a post-translocated register and can hyper-translocate. Transcription 2012, 3:260-269.
-
(2012)
Transcription
, vol.3
, pp. 260-269
-
-
Nedialkov, Y.A.1
Nudler, E.2
Burton, Z.F.3
-
16
-
-
73149106601
-
Allosteric control of catalysis by the F loop of RNA polymerase
-
Miropolskaya N., Artsimovitch I., Klimasauskas S., Nikiforov V., Kulbachinskiy A. Allosteric control of catalysis by the F loop of RNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:18942-18947.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 18942-18947
-
-
Miropolskaya, N.1
Artsimovitch, I.2
Klimasauskas, S.3
Nikiforov, V.4
Kulbachinskiy, A.5
-
17
-
-
0142147268
-
A new class of bacterial RNA polymerase inhibitor affects nucleotide addition
-
Artsimovitch I., Chu C., Lynch A.S., Landick R. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science 2003, 302:650-654.
-
(2003)
Science
, vol.302
, pp. 650-654
-
-
Artsimovitch, I.1
Chu, C.2
Lynch, A.S.3
Landick, R.4
-
18
-
-
34848915239
-
Allosteric control of the RNA polymerase by the elongation factor RfaH
-
Svetlov V., Belogurov G.A., Shabrova E., Vassylyev D.G., Artsimovitch I. Allosteric control of the RNA polymerase by the elongation factor RfaH. Nucleic Acids Res. 2007, 35:5694-5705.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 5694-5705
-
-
Svetlov, V.1
Belogurov, G.A.2
Shabrova, E.3
Vassylyev, D.G.4
Artsimovitch, I.5
-
19
-
-
0034051171
-
The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex
-
Kireeva M.L., Komissarova N., Waugh D.S., Kashlev M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 2000, 275:6530-6536.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 6530-6536
-
-
Kireeva, M.L.1
Komissarova, N.2
Waugh, D.S.3
Kashlev, M.4
-
20
-
-
44449094019
-
Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation
-
Kireeva M.L., Nedialkov Y.A., Cremona G.H., Purtov Y.A., Lubkowska L., Malagon F., Burton Z.F., Strathern J.N., Kashlev M. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell 2008, 30:557-566.
-
(2008)
Mol. Cell
, vol.30
, pp. 557-566
-
-
Kireeva, M.L.1
Nedialkov, Y.A.2
Cremona, G.H.3
Purtov, Y.A.4
Lubkowska, L.5
Malagon, F.6
Burton, Z.F.7
Strathern, J.N.8
Kashlev, M.9
-
21
-
-
67849124180
-
Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase
-
Kireeva M., Nedialkov Y.A., Gong X.Q., Zhang C., Xiong Y., Moon W., Burton Z.F., Kashlev M. Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods 2009, 48:333-345.
-
(2009)
Methods
, vol.48
, pp. 333-345
-
-
Kireeva, M.1
Nedialkov, Y.A.2
Gong, X.Q.3
Zhang, C.4
Xiong, Y.5
Moon, W.6
Burton, Z.F.7
Kashlev, M.8
-
22
-
-
84859710196
-
Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage
-
Walmacq C., Cheung A.C., Kireeva M.L., Lubkowska L., Ye C., Gotte D., Strathern J.N., Carell T., Cramer P., Kashlev M. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell 2012, 46:18-29.
-
(2012)
Mol. Cell
, vol.46
, pp. 18-29
-
-
Walmacq, C.1
Cheung, A.C.2
Kireeva, M.L.3
Lubkowska, L.4
Ye, C.5
Gotte, D.6
Strathern, J.N.7
Carell, T.8
Cramer, P.9
Kashlev, M.10
-
23
-
-
0018872101
-
Model for regulation of the histidine operon of Salmonella
-
Johnston H.M., Barnes W.M., Chumley F.G., Bossi L., Roth J.R. Model for regulation of the histidine operon of Salmonella. Proc. Natl. Acad. Sci. U. S. A. 1980, 77:508-512.
-
(1980)
Proc. Natl. Acad. Sci. U. S. A.
, vol.77
, pp. 508-512
-
-
Johnston, H.M.1
Barnes, W.M.2
Chumley, F.G.3
Bossi, L.4
Roth, J.R.5
-
24
-
-
37349115934
-
An allosteric path to transcription termination
-
Epshtein V., Cardinale C.J., Ruckenstein A.E., Borukhov S., Nudler E. An allosteric path to transcription termination. Mol. Cell 2007, 28:991-1001.
-
(2007)
Mol. Cell
, vol.28
, pp. 991-1001
-
-
Epshtein, V.1
Cardinale, C.J.2
Ruckenstein, A.E.3
Borukhov, S.4
Nudler, E.5
-
25
-
-
0033120034
-
The mechanism of intrinsic transcription termination
-
Gusarov I., Nudler E. The mechanism of intrinsic transcription termination. Mol. Cell 1999, 3:495-504.
-
(1999)
Mol. Cell
, vol.3
, pp. 495-504
-
-
Gusarov, I.1
Nudler, E.2
-
26
-
-
0035958552
-
Allosteric binding of nucleoside triphosphates to RNA polymerase regulates transcription elongation
-
Foster J.E., Holmes S.F., Erie D.A. Allosteric binding of nucleoside triphosphates to RNA polymerase regulates transcription elongation. Cell 2001, 106:243-252.
-
(2001)
Cell
, vol.106
, pp. 243-252
-
-
Foster, J.E.1
Holmes, S.F.2
Erie, D.A.3
-
27
-
-
77951973031
-
Stepwise mechanism for transcription fidelity
-
Yuzenkova Y., Bochkareva A., Tadigotla V.R., Roghanian M., Zorov S., Severinov K., Zenkin N. Stepwise mechanism for transcription fidelity. BMC Biol. 2010, 8:54.
-
(2010)
BMC Biol.
, vol.8
, pp. 54
-
-
Yuzenkova, Y.1
Bochkareva, A.2
Tadigotla, V.R.3
Roghanian, M.4
Zorov, S.5
Severinov, K.6
Zenkin, N.7
-
29
-
-
79955027964
-
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription
-
Kennedy S.R., Erie D.A. Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:6079-6084.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 6079-6084
-
-
Kennedy, S.R.1
Erie, D.A.2
-
30
-
-
84860211901
-
Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II
-
Larson M.H., Zhou J., Kaplan C.D., Palangat M., Kornberg R.D., Landick R., Block S.M. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:6555-6560.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 6555-6560
-
-
Larson, M.H.1
Zhou, J.2
Kaplan, C.D.3
Palangat, M.4
Kornberg, R.D.5
Landick, R.6
Block, S.M.7
-
31
-
-
80053378346
-
Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase
-
Johnson R.S., Strausbauch M., Carraway J.K. Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase. J. Mol. Biol. 2011, 412:849-861.
-
(2011)
J. Mol. Biol.
, vol.412
, pp. 849-861
-
-
Johnson, R.S.1
Strausbauch, M.2
Carraway, J.K.3
-
32
-
-
48749102174
-
Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase
-
Johnson R.S., Strausbauch M., Cooper R., Register J.K. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. J. Mol. Biol. 2008, 381:1106-1113.
-
(2008)
J. Mol. Biol.
, vol.381
, pp. 1106-1113
-
-
Johnson, R.S.1
Strausbauch, M.2
Cooper, R.3
Register, J.K.4
-
33
-
-
33745808766
-
Kinetic investigation of Escherichia coli RNA polymerase mutants that influence nucleotide discrimination and transcription fidelity
-
Holmes S.F., Santangelo T.J., Cunningham C.K., Roberts J.W., Erie D.A. Kinetic investigation of Escherichia coli RNA polymerase mutants that influence nucleotide discrimination and transcription fidelity. J. Biol. Chem. 2006, 281:18677-18683.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 18677-18683
-
-
Holmes, S.F.1
Santangelo, T.J.2
Cunningham, C.K.3
Roberts, J.W.4
Erie, D.A.5
-
34
-
-
80051538984
-
RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase
-
Hein P.P., Palangat M., Landick R. RNA transcript 3'-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 2011, 50:7002-7014.
-
(2011)
Biochemistry
, vol.50
, pp. 7002-7014
-
-
Hein, P.P.1
Palangat, M.2
Landick, R.3
-
35
-
-
34547204502
-
A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing
-
Toulokhonov I., Zhang J., Palangat M., Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell 2007, 27:406-419.
-
(2007)
Mol. Cell
, vol.27
, pp. 406-419
-
-
Toulokhonov, I.1
Zhang, J.2
Palangat, M.3
Landick, R.4
-
36
-
-
77953280325
-
Nanomechanical constraints acting on the catalytic site of cellular RNA polymerases
-
Weinzierl R.O. Nanomechanical constraints acting on the catalytic site of cellular RNA polymerases. Biochem. Soc. Trans. 2011, 38:428-432.
-
(2011)
Biochem. Soc. Trans.
, vol.38
, pp. 428-432
-
-
Weinzierl, R.O.1
-
37
-
-
34447499995
-
Structural basis for transcription elongation by bacterial RNA polymerase
-
Vassylyev D.G., Vassylyeva M.N., Perederina A., Tahirov T.H., Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 2007, 448:157-162.
-
(2007)
Nature
, vol.448
, pp. 157-162
-
-
Vassylyev, D.G.1
Vassylyeva, M.N.2
Perederina, A.3
Tahirov, T.H.4
Artsimovitch, I.5
-
38
-
-
49449102926
-
Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation
-
Brueckner F., Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat. Struct. Mol. Biol. 2008, 15:811-818.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 811-818
-
-
Brueckner, F.1
Cramer, P.2
-
39
-
-
84867297989
-
Active site opening and closure control translocation of multisubunit RNA polymerase
-
Malinen A.M., Turtola M., Parthiban M., Vainonen L., Johnson M.S., Belogurov G.A. Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res. 2012, 40:7442-7451.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 7442-7451
-
-
Malinen, A.M.1
Turtola, M.2
Parthiban, M.3
Vainonen, L.4
Johnson, M.S.5
Belogurov, G.A.6
|