메뉴 건너뛰기




Volumn 26, Issue 1, 2013, Pages 57-97

Regularized nonnegative shared subspace learning

Author keywords

Auxiliary sources; Multi task clustering; Nonnegative shared subspace learning; Transfer learning

Indexed keywords

AUXILIARY SOURCE; CLUSTERING APPLICATIONS; DATA MINING TASKS; DATA-SOURCES; FORMAL FRAMEWORK; JOINT ANALYSIS; JOINT MODELING; MULTI-TASK CLUSTERING; NONNEGATIVE MATRIX FACTORIZATION; ORTHOGONALITY CONSTRAINTS; PERFORMANCE DEGRADATION; REAL WORLD DATA; SUBSPACE LEARNING; TRANSFER LEARNING;

EID: 84872397219     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-011-0244-8     Document Type: Article
Times cited : (40)

References (58)
  • 1
    • 85162037342 scopus 로고    scopus 로고
    • Learning multiple tasks using manifold regularization
    • Agarwal A, Daumé H III, Gerber S (2010) Learning multiple tasks using manifold regularization. In: Advances in neural information processing systems, vol 23, pp 46-54
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 46-54
    • Agarwal A, D.1
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • 2249873 1222.68133
    • Ando R, Zhang T (2005) A framework for learning predictive structures from multiple tasks and unlabeled data. J Mach Learn Res 6: 1817-1853
    • (2005) J Mach Learn Res , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 3
    • 84873117260 scopus 로고    scopus 로고
    • Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
    • Bae E, Bailey J (2006) Coala: a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In: IEEE international conference on data mining, pp 53-62
    • (2006) IEEE International Conference on Data Mining , pp. 53-62
    • Bae, E.1    Bailey, J.2
  • 5
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • 1752410 0940.68106
    • Baxter J (2000) A model of inductive bias learning. J Artif Intell Res 12: 149-198
    • (2000) J Artif Intell Res , vol.12 , pp. 149-198
    • Baxter, J.1
  • 7
    • 31044445386 scopus 로고    scopus 로고
    • Email surveillance using non-negative matrix factorization
    • 1086.68502 10.1007/s10588-005-5380-5
    • Berry M, Browne M (2005) Email surveillance using non-negative matrix factorization. Comput Math Organ Theory 11(3): 249-264
    • (2005) Comput Math Organ Theory , vol.11 , Issue.3 , pp. 249-264
    • Berry, M.1    Browne, M.2
  • 8
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • 2409971 05560147 10.1016/j.csda.2006.11.006
    • Berry M, Browne M, Langville A, Pauca V, Plemmons R (2007) Algorithms and applications for approximate nonnegative matrix factorization. Comput Stat Data Anal 52(1): 155-173
    • (2007) Comput Stat Data Anal , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.1    Browne, M.2    Langville, A.3    Pauca, V.4    Plemmons, R.5
  • 10
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • 1112.68379
    • Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation. J Mach Learn Res 3: 993-1022
    • (2003) J Mach Learn Res , vol.3 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 11
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • 1131.68084 10.1016/j.patcog.2007.09.010
    • Boutsidis C, Gallopoulos E (2008) SVD based initialization: a head start for nonnegative matrix factorization. Pattern Recogn 41(4): 1350-1362
    • (2008) Pattern Recogn , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 12
    • 48149102523 scopus 로고    scopus 로고
    • Video content representation by incremental non-negative matrix factorization
    • Bucak S, Gunsel B (2007) Video content representation by incremental non-negative matrix factorization. ICIP 2: 113-116
    • (2007) ICIP , vol.2 , pp. 113-116
    • Bucak, S.1    Gunsel, B.2
  • 15
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized non-negative matrix factorization for data representation
    • 10.1109/TPAMI.2010.231
    • Cai D, He X, Han J, Huang T (2011) Graph regularized non-negative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8): 1548-1560
    • (2011) IEEE Trans Pattern Anal Mach Intell , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.4
  • 16
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • 2765508 10.1023/A:1007379606734
    • Caruana R (1997) Multitask learning. Mach Learn 28(1): 41-75
    • (1997) Mach Learn , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 20
    • 71149083696 scopus 로고    scopus 로고
    • Eigentransfer: A unified framework for transfer learning
    • Dai W, Jin O, Xue G, Yang Q, Yu Y (2009) Eigentransfer: a unified framework for transfer learning. ICML, pp 193-200
    • (2009) ICML , pp. 193-200
    • Dai, W.1    Jin, O.2    Xue, G.3    Yang, Q.4    Yu, Y.5
  • 21
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • 501537 0364.62022
    • Dempster A, Laird N, Rubin D et al (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1): 1-38
    • (1977) J R Stat Soc ser B (Methodol) , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 24
    • 77951197506 scopus 로고    scopus 로고
    • Learning the shared subspace for multi-task clustering and transductive transfer classification
    • Gu Q, Zhou J (2009a) Learning the shared subspace for multi-task clustering and transductive transfer classification. In: IEEE international conference on data mining, pp 159-168
    • (2009) IEEE International Conference on Data Mining , pp. 159-168
    • Gu, Q.1    Zhou, J.2
  • 29
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • 1062.68134 10.1162/0899766042321814
    • Hardoon D, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12): 2639-2664
    • (2004) Neural Comput , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 33
    • 67349093319 scopus 로고    scopus 로고
    • Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method
    • 2421467 1162.65354 10.1137/07069239X
    • Kim H, Park H (2008) Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method. SIAM J Matrix Anal Appl 30(2): 713-730
    • (2008) SIAM J Matrix Anal Appl , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 35
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee D, Seung H (2001) Algorithms for non-negative matrix factorization. Adv Neural Inform Process Syst 13: 556-562
    • (2001) Adv Neural Inform Process Syst , vol.13 , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 37
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • 2348161 1173.90583 10.1162/neco.2007.19.10.2756
    • Lin C (2007) Projected gradient methods for nonnegative matrix factorization. Neural Comput 19(10): 2756-2779
    • (2007) Neural Comput , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.1
  • 38
  • 43
    • 70350633261 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Department of Computer Science and Engineering, HKUST, Hong Kong
    • Pan S, Yang Q (2008) A survey on transfer learning. Technical Report HKUST-CS08-08. Department of Computer Science and Engineering, HKUST, Hong Kong
    • (2008) Technical Report HKUST-CS08-08
    • Pan, S.1    Yang, Q.2
  • 46
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • 10.1016/0306-4573(88)90021-0
    • Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inform Process Manag 24(5): 513-523
    • (1988) Inform Process Manag , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 47
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • 10.1109/34.868688
    • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8): 888-905
    • (2000) IEEE Trans Pattern Anal Mach Intell , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 48
    • 77952894864 scopus 로고    scopus 로고
    • Bregman divergence based regularization for transfer subspace learning
    • 10.1109/TKDE.2009.126
    • Si S, Tao D, Geng B (2009) Bregman divergence based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7): 929-942
    • (2009) IEEE Trans Knowl Data Eng , vol.22 , Issue.7 , pp. 929-942
    • Si, S.1    Tao, D.2    Geng, B.3
  • 49
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in neural information processing systems, pp 640-646
    • (1996) Advances in Neural Information Processing Systems , pp. 640-646
    • Thrun, S.1
  • 50
    • 12344317125 scopus 로고    scopus 로고
    • Improving non-negative matrix factorizations through structured initialization
    • 10.1016/j.patcog.2004.02.013
    • Wild S, Curry J, Dougherty A (2004) Improving non-negative matrix factorizations through structured initialization. Pattern Recogn 37(11): 2217-2232
    • (2004) Pattern Recogn , vol.37 , Issue.11 , pp. 2217-2232
    • Wild, S.1    Curry, J.2    Dougherty, A.3
  • 51
  • 56
    • 79954425066 scopus 로고    scopus 로고
    • Multitask Bregman clustering
    • 10.1016/j.neucom.2011.02.004
    • Zhang J, Zhang C (2011) Multitask Bregman clustering. Neurocomputing 74(10): 1720-1734
    • (2011) Neurocomputing , vol.74 , Issue.10 , pp. 1720-1734
    • Zhang, J.1    Zhang, C.2
  • 58
    • 78651280445 scopus 로고    scopus 로고
    • Collaborative dual-plsa: Mining distinction and commonality across multiple domains for text classification
    • Zhuang F, Luo P, Shen Z, He Q, Xiong Y, Shi Z, Xiong H (2010) Collaborative dual-plsa: mining distinction and commonality across multiple domains for text classification. CIKM, pp 359-368
    • (2010) CIKM , pp. 359-368
    • Zhuang, F.1    Luo, P.2    Shen, Z.3    He, Q.4    Xiong, Y.5    Shi, Z.6    Xiong, H.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.