메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1159-1168

Unsupervised transfer classification: Application to text categorization

Author keywords

Generalized maximum entropy; Text categorization; Unsupervised transfer classification

Indexed keywords

CLASS INFORMATION; CLASSIFICATION MODELS; DATA AND INFORMATION; DATA SETS; EMPIRICAL STUDIES; LABEL INFORMATION; LEARNING PROBLEM; MAXIMUM ENTROPY; MAXIMUM ENTROPY MODELS; OPTIMAL MODEL; PROBLEM DOMAIN; SIDE INFORMATION; TARGET CLASS; TEXT CATEGORIZATION; TRAINING EXAMPLE; TRANSFER LEARNING; UNSUPERVISED TRANSFER CLASSIFICATION;

EID: 77956197987     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835950     Document Type: Conference Paper
Times cited : (13)

References (31)
  • 1
    • 33746102377 scopus 로고    scopus 로고
    • Unifying divergence minimization and statistical inference via convex duality
    • Y. Altun and A. J. Smola. Unifying divergence minimization and statistical inference via convex duality. In COLT, 2006.
    • (2006) COLT
    • Altun, Y.1    Smola, A.J.2
  • 3
    • 57749097129 scopus 로고    scopus 로고
    • A spectral regularization framework for multi-task structure learning
    • A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task structure learning. In NIPS, 2007.
    • (2007) NIPS
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3    Ying, Y.4
  • 4
    • 85161977902 scopus 로고    scopus 로고
    • Multi-task Gaussian process prediction
    • E. Bonilla, K. M. Chai, and C. Williams. Multi-task gaussian process prediction. In NIPS, 2008.
    • (2008) NIPS
    • Bonilla, E.1    Chai, K.M.2    Williams, C.3
  • 6
    • 0004014502 scopus 로고    scopus 로고
    • A Gaussian prior for smoothing maximum entropy models
    • S. F. Chen and R. Rosenfeld. A gaussian prior for smoothing maximum entropy models. Technical report, 1999.
    • (1999) Technical Report
    • Chen, S.F.1    Rosenfeld, R.2
  • 10
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In SIGKDD, 2008.
    • (2008) SIGKDD
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 11
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • J. Jiang and C. Zhai. Instance weighting for domain adaptation in nlp. In ACL, 2007.
    • (2007) ACL
    • Jiang, J.1    Zhai, C.2
  • 12
    • 84883103974 scopus 로고    scopus 로고
    • Image annotations by combining multiple evidence & wordnet
    • Y. Jin, L. Khan, L. Wang, and M. Awad. Image annotations by combining multiple evidence & wordnet. In ACMMM, 2005.
    • (2005) ACMMM
    • Jin, Y.1    Khan, L.2    Wang, L.3    Awad, M.4
  • 13
    • 33845583962 scopus 로고    scopus 로고
    • Correlated label propagation with application to multi-label learning
    • F. Kang, R. Jin, and R. Sukthankar. Correlated label propagation with application to multi-label learning. In CVPR, 2006.
    • (2006) CVPR
    • Kang, F.1    Jin, R.2    Sukthankar, R.3
  • 15
    • 34547971087 scopus 로고    scopus 로고
    • Learning about individuals from group statistics
    • H. Kück and N. de Freitas. Learning about individuals from group statistics. In UAI, 2005.
    • (2005) UAI
    • Kück, H.1    De Freitas, N.2
  • 16
    • 14344249890 scopus 로고    scopus 로고
    • Learning to learn with the informative vector machine
    • N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In ICML, 2004.
    • (2004) ICML
    • Lawrence, N.D.1    Platt, J.C.2
  • 17
    • 31844444368 scopus 로고    scopus 로고
    • Logistic regression with an auxiliary data source
    • X. Liao, Y. Xue, and L. Carin. Logistic regression with an auxiliary data source. In ICML, 2005.
    • (2005) ICML
    • Liao, X.1    Xue, Y.2    Carin, L.3
  • 24
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modeling
    • R. Rosenfeld. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and Language, 10:187-228, 1996.
    • (1996) Computer, Speech and Language , vol.10 , pp. 187-228
    • Rosenfeld, R.1
  • 26
    • 84898954552 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In NIPS, 2003.
    • (2003) NIPS
    • Ueda, N.1    Saito, K.2
  • 27
    • 77956221086 scopus 로고    scopus 로고
    • Heterogeneous transfer learning for image clustering via the social web
    • Q. Yang, Y. Chen, G. Xue, W. Dai, and Y. Yu. Heterogeneous transfer learning for image clustering via the social web. In ACL, 2009.
    • (2009) ACL
    • Yang, Q.1    Chen, Y.2    Xue, G.3    Dai, W.4    Yu, Y.5
  • 28
    • 77956551582 scopus 로고    scopus 로고
    • Learning from noisy side information by generalized maximum entropy model
    • T. Yang, R. Jin, and A. K. Jain. Learning from noisy side information by generalized maximum entropy model. In ICML, 2010.
    • (2010) ICML
    • Yang, T.1    Jin, R.2    Jain, A.K.3
  • 29
    • 84885640929 scopus 로고    scopus 로고
    • Multi-label informed latent semantic indexing
    • K. Yu, S. Yu, and V. Tresp. Multi-label informed latent semantic indexing. In SIGIR, 2005.
    • (2005) SIGIR
    • Yu, K.1    Yu, S.2    Tresp, V.3
  • 30
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maximum entropy method. In SIGIR, 2005.
    • (2005) SIGIR
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.