메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Learning multiple tasks using manifold regularization

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS;

EID: 85162037342     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (76)

References (24)
  • 3
    • 73549115421 scopus 로고    scopus 로고
    • When is there a representer theorem? vector versus matrix regularizers
    • A. Argyriou, C. A. Micchelli, and M. Pontil. When is there a representer theorem? vector versus matrix regularizers. J. Mach. Learn. Res., 10:2507-2529, 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2507-2529
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3
  • 4
    • 85162007328 scopus 로고    scopus 로고
    • A spectral regularization framework for multi-task structure learning
    • A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task structure learning. In NIPS '08. 2008.
    • (2008) NIPS '08
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3    Ying, Y.4
  • 5
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • 2003
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR, 4:2003, 2003.
    • (2003) JMLR , vol.4
    • Bakker, B.1    Heskes, T.2
  • 6
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373-1396, 2002.
    • (2002) Neural Computation , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 7
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399-2434, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. In Machine Learning, pages 41-75, 1997.
    • (1997) Machine Learning , pp. 41-75
    • Caruana, R.1
  • 10
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. JMLR, 6:615-637, 2005.
    • (2005) JMLR , vol.6 , pp. 615-637
    • Evgeniou, T.1    Micchelli, C.A.2    Pontil, M.3
  • 13
    • 84858783652 scopus 로고    scopus 로고
    • Clustered multi-task learning: A convex formulation
    • L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In NIPS '08, 2008.
    • (2008) NIPS '08
    • Jacob, L.1    Bach, F.2    Vert, J.-P.3
  • 14
    • 0030521288 scopus 로고    scopus 로고
    • Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs
    • P. J. Lenk, W. S. DeSarbo, P. E. Green, and M. R. Young. Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. MARKETING SCIENCE, 1996.
    • (1996) Marketing Science
    • Lenk, P.J.1    Desarbo, W.S.2    Green, P.E.3    Young, M.R.4
  • 16
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • C. A. Micchelli and M. Pontil. Regularized multi-task learning. In KDD 2004, pages 109-117, 2004.
    • (2004) KDD 2004 , pp. 109-117
    • Micchelli, C.A.1    Pontil, M.2
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • December
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 18
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J. B. Tenenbaum, V. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 19
    • 0003901612 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Norwell, MA, USA
    • S. Thrun and L. Pratt, editors. Learning to learn. Kluwer Academic Publishers, Norwell, MA, USA, 1998.
    • (1998) Learning to Learn
    • Thrun, S.1    Pratt, L.2
  • 20
    • 14344251006 scopus 로고    scopus 로고
    • Learning a kernel matrix for nonlinear dimensionality reduction
    • ACM Press
    • K. Q.Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. In In ICML 2004, pages 839-846. ACM Press, 2004.
    • (2004) ICML 2004 , pp. 839-846
    • Weinberger, K.Q.1    Sha, F.2    Saul, L.K.3
  • 21
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with dirichlet process priors
    • Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with dirichlet process priors. J. Mach. Learn. Res., 8:35-63, 2007.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4
  • 22
    • 31844442664 scopus 로고    scopus 로고
    • Learning gaussian processes from multiple tasks
    • K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple tasks. In ICML '05, 2005.
    • (2005) ICML '05
    • Yu, K.1    Tresp, V.2    Schwaighofer, A.3
  • 23
    • 55149096818 scopus 로고    scopus 로고
    • Flexible latent variable models for multi-task learning
    • J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable models for multi-task learning. Mach. Learn., 73(3):221-242, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 221-242
    • Zhang, J.1    Ghahramani, Z.2    Yang, Y.3
  • 24
    • 79951845184 scopus 로고    scopus 로고
    • Learning multiple related tasks using latent independent component analysis
    • J. Zhang, J. Zhang, Y. Yang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent independent component analysis. In NIPS '05, 2005.
    • (2005) NIPS '05
    • Zhang, J.1    Zhang, J.2    Yang, Y.3    Ghahramani, Z.4    Yang, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.