메뉴 건너뛰기




Volumn , Issue , 2010, Pages 359-368

Collaborative dual-PLSA: Mining distinction and commonality across multiple domains for text classification

Author keywords

Classification; Cross domain learning; Statistical generative models

Indexed keywords

CLASSIFICATION; CLASSIFICATION TASKS; CROSS-DOMAIN; DATA DISTRIBUTION; DATA DOMAINS; DIFFERENT DOMAINS; EXPECTATION-MAXIMIZATION ALGORITHMS; GENERATIVE MODEL; KNOWLEDGE TRANSFORMATION; LATENT FACTOR; LATENT VARIABLE; MULTIPLE DATA; MULTIPLE DOMAINS; MULTIPLE SOURCE; MULTIPLE TARGETS; PLSA MODEL; PROBABILISTIC LATENT SEMANTIC ANALYSIS; STATE-OF-THE-ART METHODS; STATISTICAL MODELS; TEXT CLASSIFICATION; TRANSFER LEARNING;

EID: 78651280445     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1871437.1871486     Document Type: Conference Paper
Times cited : (51)

References (21)
  • 16
    • 77951197506 scopus 로고    scopus 로고
    • Learning the shared subspace for multi-task clustering and transductive transfer classification
    • Miami, Florida, USA
    • Q. Q. Gu and J. Zhou. Learning the shared subspace for multi-task clustering and transductive transfer classification. In Proc. of the International Conference on Data Mining (ICDM), Miami, Florida, USA, 2009.
    • (2009) Proc. of the International Conference on Data Mining (ICDM)
    • Gu, Q.Q.1    Zhou, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.