메뉴 건너뛰기




Volumn 13, Issue 6, 2001, Pages 1199-1241

Generalization in interactive networks: The benefits of inhibitory competition and Hebbian learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANIMAL; BIOLOGICAL MODEL; COMPUTER SIMULATION; HUMAN; LEARNING; NERVE CELL NETWORK; PHYSIOLOGY; PSYCHOLOGICAL MODEL; REVIEW;

EID: 0035380627     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/08997660152002834     Document Type: Review
Times cited : (101)

References (78)
  • 2
    • 0023563286 scopus 로고
    • A learning rule for asynchronous perceptrons with feedback in a combinatorial environment
    • M. Caudil & C. Butler (Eds.), San Diego, CA
    • Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In M. Caudil & C. Butler (Eds.), Proceedings of the IEEE First International Conference on Neural Networks (pp. 609-618). San Diego, CA.
    • (1987) Proceedings of the IEEE First International Conference on Neural Networks , pp. 609-618
    • Almeida, L.B.1
  • 3
    • 0025078744 scopus 로고
    • Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex
    • Artola, A., Brocher, S., & Singer, W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature, 347, 69-72.
    • (1990) Nature , vol.347 , pp. 69-72
    • Artola, A.1    Brocher, S.2    Singer, W.3
  • 4
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1, 295-311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.B.1
  • 5
    • 0030477678 scopus 로고    scopus 로고
    • A synaptic basis for memory storage in the cerebral cortex
    • Bear, M. F. (1996). A synaptic basis for memory storage in the cerebral cortex. Proceedings of the National Academy of Sciences, 93, 3453.
    • (1996) Proceedings of the National Academy of Sciences , vol.93 , pp. 3453
    • Bear, M.F.1
  • 8
    • 0024490816 scopus 로고
    • The recent excitement about neural networks
    • Crick, F. H. C. (1989). The recent excitement about neural networks. Nature, 337, 129-132.
    • (1989) Nature , vol.337 , pp. 129-132
    • Crick, F.H.C.1
  • 9
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan, P., & Zemel, R. S. (1995). Competition and multiple cause models. Neural Computation, 7, 565-579.
    • (1995) Neural Computation , vol.7 , pp. 565-579
    • Dayan, P.1    Zemel, R.S.2
  • 10
  • 11
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1-47.
    • (1991) Cerebral Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 12
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6(4), 559-601.
    • (1994) Neural Computation , vol.6 , Issue.4 , pp. 559-601
    • Field, D.J.1
  • 13
    • 0025604930 scopus 로고
    • Forming sparse representations by local anti-Hebbian learning
    • Földiák, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64(2), 165-170.
    • (1990) Biological Cybernetics , vol.64 , Issue.2 , pp. 165-170
    • Földiák, P.1
  • 14
    • 0030631860 scopus 로고    scopus 로고
    • A simple neural network exhibiting selective activation of neuronal ensembles: From winner-take-all to winners-share-all
    • Fukai, T., & Tanaka, S. (1997). A simple neural network exhibiting selective activation of neuronal ensembles: From winner-take-all to winners-share-all. Neural Computation, 9, 77-97.
    • (1997) Neural Computation , vol.9 , pp. 77-97
    • Fukai, T.1    Tanaka, S.2
  • 15
    • 0022624619 scopus 로고
    • Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat
    • Gabbot, P. L. A., & Somogyi, P. (1986). Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat. Experimental Brain Research, 61, 323-331.
    • (1986) Experimental Brain Research , vol.61 , pp. 323-331
    • Gabbot, P.L.A.1    Somogyi, P.2
  • 17
    • 0001518475 scopus 로고
    • The organization and activation of orthographic knowledge in reading aloud
    • Glushko, R. J. (1979). The organization and activation of orthographic knowledge in reading aloud. Journal fo Experimental Psychology, 5, 674-691.
    • (1979) Journal fo Experimental Psychology , vol.5 , pp. 674-691
    • Glushko, R.J.1
  • 18
    • 0001353951 scopus 로고
    • The role of weight normalization in competitive learning
    • Goodhill, G. J., & Barrow, H. G. (1994). The role of weight normalization in competitive learning. Neural Computation, 6, 255-269.
    • (1994) Neural Computation , vol.6 , pp. 255-269
    • Goodhill, G.J.1    Barrow, H.G.2
  • 20
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding I: Parallel development and coding of neural feature detectors
    • Grossberg, S. (1976). Adaptive pattern classification and universal recoding I: Parallel development and coding of neural feature detectors. Biological Cybernetics, 23, 121-134.
    • (1976) Biological Cybernetics , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 21
    • 0033160228 scopus 로고    scopus 로고
    • Phonology, reading acquisition, and dyslexia: Insights from connectionist models
    • Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: Insights from connectionist models. Psychological Review, 106, 491-528.
    • (1999) Psychological Review , vol.106 , pp. 491-528
    • Harm, M.W.1    Seidenberg, M.S.2
  • 22
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G. E. (1989a). Connectionist learning procedures. Artificial Intelligence, 40, 185-234.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 23
    • 0001590282 scopus 로고
    • Deterministic Boltzmann learning performs steepest descent in weight-space
    • Hinton, G. E. (1989b). Deterministic Boltzmann learning performs steepest descent in weight-space. Neural Computation, 1, 143-150.
    • (1989) Neural Computation , vol.1 , pp. 143-150
    • Hinton, G.E.1
  • 25
    • 0001504852 scopus 로고
    • Learning representations by recirculation
    • D. Z. Anderson (Ed.), New York: American Institute of Physics
    • Hinton, G. E., & McClelland, J. L. (1988). Learning representations by recirculation. In D. Z. Anderson (Ed.), Neural information processing systems, 1987 (pp. 358-366). New York: American Institute of Physics.
    • (1988) Neural Information Processing Systems, 1987 , pp. 358-366
    • Hinton, G.E.1    McClelland, J.L.2
  • 26
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554-2558.
    • (1982) Proceedings of the National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 27
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81, 3088-3092.
    • (1984) Proceedings of the National Academy of Sciences , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 29
    • 0027521697 scopus 로고
    • Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46)
    • Levitt, J. B., Lewis, D. A., Yoshioka, T., & Lund, J. S. (1993). Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). Journal of Comparative Neurology, 338, 360-376.
    • (1993) Journal of Comparative Neurology , vol.338 , pp. 360-376
    • Levitt, J.B.1    Lewis, D.A.2    Yoshioka, T.3    Lund, J.S.4
  • 30
    • 0024341227 scopus 로고
    • A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory
    • Lisman, J. E. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences, 86, 9574-9578.
    • (1989) Proceedings of the National Academy of Sciences , vol.86 , pp. 9574-9578
    • Lisman, J.E.1
  • 31
    • 0028031221 scopus 로고
    • The CaM Kinase II hypothesis for the storage of synaptic memory
    • Lisman, J. (1994). The CaM Kinase II hypothesis for the storage of synaptic memory. Trends in Neurosciences, 17, 406.
    • (1994) Trends in Neurosciences , vol.17 , pp. 406
    • Lisman, J.1
  • 32
    • 0000742157 scopus 로고
    • The induction of multiscale temporal structure
    • D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Majani, E., Erlarson, R., & Abu-Mostafa, Y. (1989). The induction of multiscale temporal structure. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 1 (pp. 634-642). San Mateo, CA: Morgan Kaufmann.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 634-642
    • Majani, E.1    Erlarson, R.2    Abu-Mostafa, Y.3
  • 33
    • 0032247463 scopus 로고    scopus 로고
    • Rethinking eliminative connectionism
    • Marcus, G. F. (1998). Rethinking eliminative connectionism. Cognitive Psychology, 37, 243.
    • (1998) Cognitive Psychology , vol.37 , pp. 243
    • Marcus, G.F.1
  • 35
    • 33751563322 scopus 로고
    • Reading pseudohomophones: Implications for models of pronunciation and the locus of word-frequency effects in word naming
    • McCann, R. S., & Besner, D. (1987). Reading pseudohomophones: Implications for models of pronunciation and the locus of word-frequency effects in word naming. Journal of Experimental Psychology, 13, 14-24.
    • (1987) Journal of Experimental Psychology , vol.13 , pp. 14-24
    • McCann, R.S.1    Besner, D.2
  • 36
    • 0029340352 scopus 로고
    • Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory
    • McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457.
    • (1995) Psychological Review , vol.102 , pp. 419-457
    • McClelland, J.L.1    McNaughton, B.L.2    O'Reilly, R.C.3
  • 37
    • 58149409989 scopus 로고
    • An interactive activation model of context effects in letter perception: Part 1. An account of basic findings
    • McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88(5), 375-407.
    • (1981) Psychological Review , vol.88 , Issue.5 , pp. 375-407
    • McClelland, J.L.1    Rumelhart, D.E.2
  • 38
    • 0024401053 scopus 로고
    • Ocular dominance column development: Analysis and simulation
    • Miller, K. D., Keller, J. B., & Stryker, M. P. (1989). Ocular dominance column development: Analysis and simulation. Science, 245, 605-615.
    • (1989) Science , vol.245 , pp. 605-615
    • Miller, K.D.1    Keller, J.B.2    Stryker, M.P.3
  • 39
    • 0002727735 scopus 로고
    • The role of constraints in Hebbian learning
    • Miller, K. D., & MacKay, D. J. C. (1994). The role of constraints in Hebbian learning. Neural Computation, 6, 100-126.
    • (1994) Neural Computation , vol.6 , pp. 100-126
    • Miller, K.D.1    MacKay, D.J.C.2
  • 40
    • 0002852592 scopus 로고
    • Contrastive Hebbian learning in the continuous Hopfield model
    • D. S. Touretzky, G. E. Hinton, & T. J. Sejnowski (Eds.), San Mateo, CA: Morgan Kaufman
    • Movellan, J. R. (1990). Contrastive Hebbian learning in the continuous Hopfield model. In D. S. Touretzky, G. E. Hinton, & T. J. Sejnowski (Eds.), Proceedings of the 1989 Connectionist Models Summer School (pp. 10-17). San Mateo, CA: Morgan Kaufman.
    • (1990) Proceedings of the 1989 Connectionist Models Summer School , pp. 10-17
    • Movellan, J.R.1
  • 42
    • 0040132871 scopus 로고    scopus 로고
    • Methods for learning articulated attractors over internal representations
    • M. Hahn, & S. C. Stoness (Eds.), Hillsdale, NJ: Erlbaum
    • Noelle, D. C., & Zimdars, A. L. (1999). Methods for learning articulated attractors over internal representations. In M. Hahn, & S. C. Stoness (Eds.), Proceedings of the 21st Annual Conference of the Cognitive Science Society (pp. 480-485). Hillsdale, NJ: Erlbaum.
    • (1999) Proceedings of the 21st Annual Conference of the Cognitive Science Society , pp. 480-485
    • Noelle, D.C.1    Zimdars, A.L.2
  • 43
    • 0000415231 scopus 로고
    • Maximum likelihood competitive learning
    • D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Nowlan, S. J. (1990). Maximum likelihood competitive learning. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 574-582). San Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 574-582
    • Nowlan, S.J.1
  • 44
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15, 267-273.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 45
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607.
    • (1996) Nature , vol.381 , pp. 607
    • Olshausen, B.A.1    Field, D.J.2
  • 46
    • 0001569746 scopus 로고    scopus 로고
    • Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm
    • O'Reilly, R. C. (1996a). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8(5), 895-938.
    • (1996) Neural Computation , vol.8 , Issue.5 , pp. 895-938
    • O'Reilly, R.C.1
  • 48
    • 0032211901 scopus 로고    scopus 로고
    • Six principles for biologically-based computational models of cortical cognition
    • O'Reilly, R. C. (1998). Six principles for biologically-based computational models of cortical cognition. Trends in Cognitive Sciences, 2(11), 455-462.
    • (1998) Trends in Cognitive Sciences , vol.2 , Issue.11 , pp. 455-462
    • O'Reilly, R.C.1
  • 49
    • 0028585928 scopus 로고
    • Hippocampal conjunctive encoding, storage, and recall: Avoiding a tradeoff
    • O'Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a tradeoff. Hippocampus, 4(6), 661-682.
    • (1994) Hippocampus , vol.4 , Issue.6 , pp. 661-682
    • O'Reilly, R.C.1    McClelland, J.L.2
  • 51
    • 0033817444 scopus 로고    scopus 로고
    • Computational principles of learning in the neocortex and hippocampus
    • O'Reilly, R. C., & Rudy, J. W. (2000). Computational principles of learning in the neocortex and hippocampus. Hippocampus, 10, 389-397.
    • (2000) Hippocampus , vol.10 , pp. 389-397
    • O'Reilly, R.C.1    Rudy, J.W.2
  • 52
    • 85039575687 scopus 로고    scopus 로고
    • Conjunctive representations in learning and memory: Principles of cortical and hippocampal function
    • in press
    • O'Reilly, R. C., & Rudy, J. W. (in press). Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological Review.
    • Psychological Review
    • O'Reilly, R.C.1    Rudy, J.W.2
  • 53
    • 0023534496 scopus 로고
    • Generalization of backpropagation to recurrent and higher order neural networks
    • D. Z. Anderson (Ed.), New York: IEEE
    • Pineda, F. J. (1987a). Generalization of backpropagation to recurrent and higher order neural networks. In D. Z. Anderson (Ed.), Proceedings of the IEEE Conference on Neural Information Processing Systems (pp. 602-611). New York: IEEE.
    • (1987) Proceedings of the IEEE Conference on Neural Information Processing Systems , pp. 602-611
    • Pineda, F.J.1
  • 54
    • 0000442791 scopus 로고
    • Generalization of backpropagation to recurrent neural networks
    • Pineda, F. J. (1987b). Generalization of backpropagation to recurrent neural networks. Physical Review Letters, 18, 2229-2232.
    • (1987) Physical Review Letters , vol.18 , pp. 2229-2232
    • Pineda, F.J.1
  • 55
    • 0000599735 scopus 로고
    • Dynamics and architecture for neural computation
    • Pineda, F. J. (1988). Dynamics and architecture for neural computation. Journal of Complexity, 4, 216-245.
    • (1988) Journal of Complexity , vol.4 , pp. 216-245
    • Pineda, F.J.1
  • 56
    • 0023974765 scopus 로고
    • On language and connectionism: Analysis of a parallel distributed processing model of language acquisition
    • Pinker, S., & Prince, A. (1988). On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. Cognition, 28, 73-193.
    • (1988) Cognition , vol.28 , pp. 73-193
    • Pinker, S.1    Prince, A.2
  • 58
    • 0029691655 scopus 로고    scopus 로고
    • Understanding normal and impaired word reading: Computational principles in quasi-regular domains
    • Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. E. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56-115.
    • (1996) Psychological Review , vol.103 , pp. 56-115
    • Plaut, D.C.1    McClelland, J.L.2    Seidenberg, M.S.3    Patterson, K.E.4
  • 59
    • 0030329355 scopus 로고    scopus 로고
    • Learning from a connectionist model of the acquisition of the English past tense
    • Plunkett, K., & Marchman, V. A. (1996). Learning from a connectionist model of the acquisition of the English past tense. Cognition, 61, 299.
    • (1996) Cognition , vol.61 , pp. 299
    • Plunkett, K.1    Marchman, V.A.2
  • 60
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 62
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Cambridge, MA: MIT Press
    • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing. Vol. 1: Foundations (pp. 318-362). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing. Vol. 1: Foundations , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 63
    • 0000213389 scopus 로고
    • On learning the past tenses of English verbs
    • J. L. McClelland, D. E. Rumelhart, & PDP Research Group (Eds.), Cambridge, MA: MIT Press
    • Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of English verbs. In J. L. McClelland, D. E. Rumelhart, & PDP Research Group (Eds.), Parallel distributed processing. Vol. 2: Psychological and biological models (pp. 216-271). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing. Vol. 2: Psychological and Biological Models , vol.2 , pp. 216-271
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 64
    • 0001608026 scopus 로고
    • Feature discovery by competitive learning
    • D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Cambridge, MA: MIT Press
    • Rumelhart, D. E., & Zipser, D. (1986). Feature discovery by competitive learning. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing. Vol. 1: Foundations (pp. 151-193). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing. Vol. 1: Foundations , vol.1 , pp. 151-193
    • Rumelhart, D.E.1    Zipser, D.2
  • 65
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • Saund, E. (1995). A multiple cause mixture model for unsupervised learning. Neural Computation, 7, 51-71.
    • (1995) Neural Computation , vol.7 , pp. 51-71
    • Saund, E.1
  • 66
    • 0024747015 scopus 로고
    • A distributed, developmental model of word recognition and naming
    • Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523-568.
    • (1989) Psychological Review , vol.96 , pp. 523-568
    • Seidenberg, M.S.1    McClelland, J.L.2
  • 67
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Cambridge, MA: MIT Press
    • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing. Vol. 1: Foundations (pp. 282-317). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing. Vol. 1: Foundations , vol.1 , pp. 282-317
    • Smolensky, P.1
  • 69
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik, V. N., & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-280.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.2
  • 71
    • 0001886404 scopus 로고
    • On overfitting and the effective number of hidden units
    • M. C. Mozer, P. Smolensky, & A. S. Weigend (Eds.), Hillsdale, NJ: Erlbaum
    • Weigend, A. (1994). On overfitting and the effective number of hidden units. In M. C. Mozer, P. Smolensky, & A. S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School (pp. 335-342). Hillsdale, NJ: Erlbaum.
    • (1994) Proceedings of the 1993 Connectionist Models Summer School , pp. 335-342
    • Weigend, A.1
  • 72
    • 0000539096 scopus 로고
    • Generalization by weight-elimination with application to forecasting
    • R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), San Mateo, CA: Morgan Kaufmann
    • Weigend, A. S., Rumelhart, D. E., & Huberman, B. A. (1991). Generalization by weight-elimination with application to forecasting. In R. P. Lippmann, J. E. Moody, & D. S. Touretzky (Eds.), Advances in neural information processing systems, 3 (pp. 875-882). San Mateo, CA: Morgan Kaufmann.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 74
    • 0002489083 scopus 로고
    • On the connection between in-sample testing and generalization error
    • Wolpert, D. H. (1992). On the connection between in-sample testing and generalization error. Complex Systems, 6, 47-94.
    • (1992) Complex Systems , vol.6 , pp. 47-94
    • Wolpert, D.H.1
  • 75
    • 0000459352 scopus 로고    scopus 로고
    • The existence of a priori distinctions between learning algorithms
    • Wolpert, D. H. (1996a). The existence of a priori distinctions between learning algorithms. Neural Computation, 8, 1391-1420.
    • (1996) Neural Computation , vol.8 , pp. 1391-1420
    • Wolpert, D.H.1
  • 76
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert, D. H. (1996b). The lack of a priori distinctions between learning algorithms. Neural Computation, 8, 1341-1390.
    • (1996) Neural Computation , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1
  • 78
    • 0023877474 scopus 로고
    • A backpropagation programmed network that simulates response properties of a subset of posterior parietal neurons
    • Zipser, D., & Andersen, R. A. (1988). A backpropagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature, 331, 679-684.
    • (1988) Nature , vol.331 , pp. 679-684
    • Zipser, D.1    Andersen, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.