-
1
-
-
79951956050
-
Time series clustering via RPCL network ensemble with different representations
-
Mar
-
Y. Yang and K. Chen, "Time series clustering via RPCL network ensemble with different representations," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 41, no. 2, pp. 190-199, Mar. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
, vol.41
, Issue.2
, pp. 190-199
-
-
Yang, Y.1
Chen, K.2
-
2
-
-
79551689218
-
An efficient tree classifier ensemble-based approach for Pedestrian detection
-
Feb
-
Y. W. Xu, X. B. Cao, and H. Qiao, "An efficient tree classifier ensemble-based approach for Pedestrian detection," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 1, pp. 107-117, Feb. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.41
, Issue.1
, pp. 107-117
-
-
Xu, Y.W.1
Cao, X.B.2
Qiao, H.3
-
3
-
-
7744225370
-
Using all data to generate decision tree ensembles
-
Nov
-
G. Martínez-Muñoz and A. Suárez, "Using all data to generate decision tree ensembles," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 4, pp. 393-397, Nov. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
, vol.34
, Issue.4
, pp. 393-397
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
4
-
-
84871801271
-
-
Ph.D. dissertation, Comput. Sci. Dept., The State University of New Jersey, Piscataway, NJ
-
A. L. Strehl, "Probably approximately correct (PAC) exploration in reinforcement learning," Ph.D. dissertation, Comput. Sci. Dept., The State University of New Jersey, Piscataway, NJ, 2007.
-
(2007)
Probably Approximately Correct (PAC) Exploration in Reinforcement Learning
-
-
Strehl, A.L.1
-
5
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of online learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
DOI 10.1023/A:1007614523901
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999. (Pubitemid 32210620)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
8
-
-
0001337304
-
Boosting and other ensemble methods
-
Nov.
-
H.Drucker, C.Cortes, L. C.Jackl, Y.LeCun, and V.Vapnik, "Boosting and other ensemble methods," Neural Comput., vol. 6, no. 6, pp. 1289-1301, Nov. 1994.
-
(1994)
Neural Comput.
, vol.6
, Issue.6
, pp. 1289-1301
-
-
Drucker, H.1
Cortes, C.2
Jackl, L.C.3
LeCun, Y.4
Vapnik, V.5
-
9
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. E.Schapire, Y.Freund, P. Bartlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Statist., vol. 26, no. 5, pp. 1651-1686, May 1998. (Pubitemid 128376902)
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
10
-
-
0342502195
-
Soft margins for AdaBoost
-
DOI 10.1023/A:1007618119488
-
G. Rätsch, T. Onoda, and K.-R. Müller, "Soft margins for AdaBoost," Mach. Learn., vol. 42, no. 3, pp. 287-320, Mar. 2001. (Pubitemid 32188795)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
11
-
-
42049117782
-
Boosting recombined weak classifiers
-
DOI 10.1016/j.patrec.2007.06.019, PII S0167865507002139
-
J. J. Rodríguez and J. Maudes, "Boosting recombined weak classifiers," Pattern Recognit. Lett., vol. 29, no. 8, pp. 1049-1059, 2008. (Pubitemid 351522343)
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.8
, pp. 1049-1059
-
-
Rodriguez, J.J.1
Maudes, J.2
-
12
-
-
79956258276
-
A time-series modeling method based on the boosting gradient-descent theory
-
May
-
Y. L. Gao, J. Y. Pan, G. L. Ji, and F. Gao, "A time-series modeling method based on the boosting gradient-descent theory," Sci. China Technol. Sci., vol. 54, no. 5, pp. 1325-1337, May 2011.
-
(2011)
Sci. China Technol. Sci.
, vol.54
, Issue.5
, pp. 1325-1337
-
-
Gao, Y.L.1
Pan, J.Y.2
Ji, G.L.3
Gao, F.4
-
13
-
-
33745780111
-
Experiments with AdaBoost.RT, an improved boosting scheme for regression
-
DOI 10.1162/neco.2006.18.7.1678
-
D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost.RT, an improved boosting scheme for regression," Neural Comput., vol. 18, no. 7, pp. 1678-1710, Jul. 2006. (Pubitemid 44024734)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1678-1710
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
14
-
-
60949105177
-
GBoost: A mathematical programming approach to graph classification and regression
-
H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda, "gBoost: A mathematical programming approach to graph classification and regression," Mach. Learn., vol. 75, no. 1, pp. 69-89, 2009.
-
(2009)
Mach. Learn.
, vol.75
, Issue.1
, pp. 69-89
-
-
Saigo, H.1
Nowozin, S.2
Kadowaki, T.3
Kudo, T.4
Tsuda, K.5
-
16
-
-
41749107387
-
AdaBoost-based algorithm for network intrusion detection
-
DOI 10.1109/TSMCB.2007.914695
-
W. M. Hu, W. Hu, and S. Maybank, "AdaBoost-based algorithm for network intrusion detection," IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 38, no. 2, pp. 577-583, Apr. 2008. (Pubitemid 351484757)
-
(2008)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.38
, Issue.2
, pp. 577-583
-
-
Hu, W.1
Hu, W.2
Maybank, S.3
-
17
-
-
41549131613
-
Evidence contrary to the statistical view of boosting
-
D. Mease and A. Wyner, "Evidence contrary to the statistical view of boosting," J. Mach. Learn. Res., vol. 9, pp. 131-156, 2008. (Pubitemid 351469030)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 131-156
-
-
Mease, D.1
Wyner, A.2
-
18
-
-
0004311187
-
-
Ph.D. dissertation, Comput. Sci. Dept., University of Potsdam, Potsdam, Germany
-
G. Rätsch, "Robust boosting via convex optimization: Theory and applications," Ph.D. dissertation, Comput. Sci. Dept., University of Potsdam, Potsdam, Germany, 2001.
-
(2001)
Robust Boosting Via Convex Optimization: Theory and Applications
-
-
Rätsch, G.1
-
19
-
-
0346786584
-
Arcing classifiers
-
Jun.
-
L. Breiman, "Arcing classifiers," Ann. Statist., vol. 26, no. 3, pp. 801-824, Jun. 1998.
-
(1998)
Ann. Statist.
, vol.26
, Issue.3
, pp. 801-824
-
-
Breiman, L.1
-
20
-
-
78049529008
-
Reduced reward-punishment editing for building ensembles of classifiers
-
Mar.
-
L. Nanni and A. Franco, "Reduced reward-punishment editing for building ensembles of classifiers," Expert Syst. Appl., vol. 38, no. 3, pp. 2395-2400, Mar. 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.3
, pp. 2395-2400
-
-
Nanni, L.1
Franco, A.2
-
21
-
-
78649915712
-
Edited AdaBoost by weighted kNN
-
Oct
-
Y. L. Gao and F. Gao, "Edited AdaBoost by weighted kNN," Neurocomputing, vol. 73, no. 16-18, pp. 3079-3088, Oct. 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.16-18
, pp. 3079-3088
-
-
Gao, Y.L.1
Gao, F.2
-
22
-
-
34548033981
-
Robust loss functions for boosting
-
T. Kanamori, T. Takenouchi, S. Eguchi, and N. Murata, "Robust loss functions for boosting," Neural Comput., vol. 19, no. 8, pp. 2183-2244, 2007.
-
(2007)
Neural Comput.
, vol.19
, Issue.8
, pp. 2183-2244
-
-
Kanamori, T.1
Takenouchi, T.2
Eguchi, S.3
Murata, N.4
-
23
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang, "Statistical behavior and consistency of classification methods based on convex risk minimization," Ann. Statist., vol. 32, no. 1, pp. 56-134, 2003.
-
(2003)
Ann. Statist.
, vol.32
, Issue.1
, pp. 56-134
-
-
Zhang, T.1
-
24
-
-
33845953137
-
Reducing the overfitting of adaboost by controlling its data distribution skewness
-
DOI 10.1142/S0218001406005137, PII S0218001406005137
-
Y. Sun, S. Todorovic, and J. Li, "Reducing the overfitting of AdaBoost by controlling its data distribution skewness," Int. J. Pattern Recognit. Artif. Intell., vol. 20, no. 7, pp. 1093-1116, 2006. (Pubitemid 46031113)
-
(2006)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.20
, Issue.7
, pp. 1093-1116
-
-
Sun, Y.1
Todorovic, S.2
Li, J.3
-
25
-
-
84898978212
-
-
Cambridge MA: MIT Press
-
L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, Boosting Algorithms as Gradient Descent, NIPS. Cambridge, MA: MIT Press, 1999, pp. 512-518.
-
(1999)
Boosting Algorithms As Gradient Descent NIPS
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.R.4
-
26
-
-
0005271994
-
A modification of Ad-ABoost
-
C. Domingo, O. Watanabe, and MAdaBoost, "A modification of Ad-aBoost," in Proc. 13th Annu. Conf. Comp. Learn. Theory, 2000, pp. 180-189.
-
(2000)
Proc. 13th Annu. Conf. Comp. Learn. Theory
, pp. 180-189
-
-
Domingo, C.1
Watanabe, O.2
Daboost, M.A.3
-
27
-
-
38049184914
-
Avoiding Boosting Overfitting by Removing Confusing shamples
-
Berlin, Germany: Springer-Verlag
-
A. Vezhnevets and O. Barinova, Avoiding Boosting Overfitting by Removing Confusing shamples, ECML (Lecture Notes in Computer Science Series), vol. 4701. Berlin, Germany: Springer-Verlag, 2007, pp. 430-441.
-
(2007)
ECML (Lecture Notes in Computer Science Series)
, vol.4701
, pp. 430-441
-
-
Vezhnevets, A.1
Barinova, O.2
-
28
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
DOI 10.1023/A:1007614523901
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Mach. Learn., vol. 37, no. 3, pp. 297-336, 1999. (Pubitemid 32210620)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
29
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: A statistical view of boosting," Ann. Statist., vol. 28, no. 2, pp. 337-407, 2000. (Pubitemid 33227445)
-
(2000)
Annals of Statistics
, vol.28
, Issue.2 SPI
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
30
-
-
10044288805
-
A new boosting algorithm using input-dependent regularizer
-
Washington, DC, Aug.
-
R. Jin, Y. Liu, L. Si, J. Carbonell, and A. G. Hauptmann, "A new boosting algorithm using input-dependent regularizer," in Proc. 20th Int. Conf. Mach. Learn., Washington, DC, Aug. 2003, pp. 21-24.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn
, pp. 21-24
-
-
Jin, R.1
Liu, Y.2
Si, L.3
Carbonell, J.4
Hauptmann, A.G.5
-
31
-
-
35248862907
-
An introduction to boosting and leveraging
-
Berlin, Germany: Springer-Verlag
-
R. Meir and G. Rätsch, "An introduction to boosting and leveraging," in Advanced Lectures on Machine Learning (Lecture Notes in Computer Science Series), vol. 2600. Berlin, Germany: Springer-Verlag, 2002, pp. 118-183.
-
(2002)
Advanced Lectures on Machine Learning (Lecture Notes in Computer Science Series)
, vol.2600
, pp. 118-183
-
-
Meir, R.1
Rätsch, G.2
-
32
-
-
77956907243
-
On over-fitting in model selection and subsequent selection bias in performance evaluation
-
Jul.
-
G. C Cawley and N. L. C. Talbot, "On over-fitting in model selection and subsequent selection bias in performance evaluation," J. Mach. Learn. Res., vol. 11, pp. 2079-2107, Jul. 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2079-2107
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
33
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
DOI 10.1023/A:1007697429651
-
L. Mason, P. L. Bartlett, and J. Baxter, "Improved generalization through explicit optimization of margins," Mach. Learn., vol. 38, no. 3, pp. 243-255, 2000. (Pubitemid 30572451)
-
(2000)
Machine Learning
, vol.38
, Issue.3
, pp. 243-255
-
-
Mason, L.1
Bartlett, P.L.2
Baxter, J.3
-
34
-
-
77958028886
-
Multi-class AdaBoost
-
J. Zhu, H. Zou, S. Rosset, and T. Hastie, "Multi-class AdaBoost," Statist. Interface, vol. 2, pp. 349-360, 2009.
-
(2009)
Statist. Interface
, vol.2
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
Hastie, T.4
-
35
-
-
77957954427
-
Asymmetric real AdaBoost
-
Z. Wang, C. Fang, and X. Ding, "Asymmetric real AdaBoost," in Proc. IEEE 19th Int. Conf. Pattern Recognit., 2008, pp. 1-4.
-
(2008)
Proc. IEEE 19th Int. Conf. Pattern Recognit.
, pp. 1-4
-
-
Wang, Z.1
Fang, C.2
Ding, X.3
-
36
-
-
0005907102
-
An improvement of AdaBoost to avoid overfitting
-
G. Rätsch, T. Onoda, and K. R. Müller, "An improvement of AdaBoost to avoid overfitting," in Proc. Int. Conf. Neural Inf. Process., 1998, pp. 506-509.
-
(1998)
Proc. Int. Conf. Neural Inf. Process.
, pp. 506-509
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.R.3
-
37
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Jan.
-
S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Comput., vol. 4, no. 1, pp. 1-58, Jan. 1992.
-
(1992)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
|