-
1
-
-
50449094780
-
On optimality of Bayesian testimation in the normal means problem
-
F. Abramovich, V. Grinshtein, and M. Pensky. On optimality of Bayesian testimation in the normal means problem. Ann. Statist., 35: 2261-2286, 2007.
-
(2007)
Ann. Statist.
, vol.35
, pp. 2261-2286
-
-
Abramovich, F.1
Grinshtein, V.2
Pensky, M.3
-
2
-
-
79960993628
-
Pac-Bayesian bounds for randomized empirical risk minimizers
-
P. Alquier. Pac-Bayesian bounds for randomized empirical risk minimizers. Math. Methods Statist., 17(4): 1-26, 2008.
-
(2008)
Math. Methods Statist.
, vol.17
, Issue.4
, pp. 1-26
-
-
Alquier, P.1
-
3
-
-
85028744723
-
Fast learning rates in statistical inference through aggregation
-
To appear
-
J.-Y. Audibert. Fast learning rates in statistical inference through aggregation, 2008. Ann. Statist., To appear.
-
(2008)
Ann. Statist.
-
-
Audibert, J.-Y.1
-
5
-
-
33746056860
-
1 penalized least squares
-
Springer, Berlin
-
1 penalized least squares. In Learning theory, Volume 4005 of Lecture Notes in Comput. Sci., pages 379-391. Springer, Berlin, 2006.
-
(2006)
Learning Theory, Volume 4005 of Lecture Notes in Comput. Sci.
, pp. 379-391
-
-
Bunea, F.1
Tsybakov, A.B.2
Wegkamp, M.3
-
6
-
-
38049043619
-
Aggregation for Gaussian regression
-
F. Bunea, A. B. Tsybakov, and M. Wegkamp. Aggregation for Gaussian regression. Ann. Statist., 35(4): 1674-1697, 2007.
-
(2007)
Ann. Statist.
, vol.35
, Issue.4
, pp. 1674-1697
-
-
Bunea, F.1
Tsybakov, A.B.2
Wegkamp, M.3
-
10
-
-
4544304381
-
On the generalization ability of on-line learning algorithms
-
N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. IEEE Trans. Inform. Theory, 50(9): 2050-2057, 2004.
-
(2004)
IEEE Trans. Inform. Theory
, vol.50
, Issue.9
, pp. 2050-2057
-
-
Cesa-Bianchi, N.1
Conconi, A.2
Gentile, C.3
-
12
-
-
33947416035
-
Near-optimal signal recovery from random projections: Universal encoding strategies?
-
E. Candès and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12): 5406-5425, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.12
, pp. 5406-5425
-
-
Candès, E.1
Tao, T.2
-
13
-
-
34548275795
-
The dantzig selector: Statistical estimation when p is much larger than n
-
E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35(6): 2313-2351, 2007.
-
(2007)
Ann. Statist.
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Candès, E.1
Tao, T.2
-
14
-
-
33144483155
-
Stable recovery of sparse overcomplete representations in the presence of noise
-
D. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1): 6-18, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.1
, pp. 6-18
-
-
Donoho, D.1
Elad, M.2
Temlyakov, V.3
-
16
-
-
70350003059
-
Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity
-
A. S. Dalalyan and A.B. Tsybakov. Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity. Mach. Learn., 72(1-2): 39-61, 2008.
-
(2008)
Mach. Learn.
, vol.72
, Issue.1-2
, pp. 39-61
-
-
Dalalyan, A.S.1
Tsybakov, A.B.2
-
17
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist., 32(2): 407-499, 2004.
-
(2004)
Ann. Statist.
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
18
-
-
0032164946
-
Sequential prediction of individual sequences under general loss functions
-
D. Haussler, J. Kivinen, and M. Warmuth. Sequential prediction of individual sequences under general loss functions. IEEE Trans. Inform. Theory, 44(5): 1906-1925, 1998.
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, Issue.5
, pp. 1906-1925
-
-
Haussler, D.1
Kivinen, J.2
Warmuth, M.3
-
20
-
-
18444410406
-
Empirical bayes selection of wavelet thresholds
-
I. Johnstone and B.W. Silverman. Empirical Bayes selection of wavelet thresholds. Ann. Statist, 33: 1700-1752, 2005.
-
(2005)
Ann. Statist
, vol.33
, pp. 1700-1752
-
-
Johnstone, I.1
Silverman, B.W.2
-
21
-
-
0001306694
-
Time-reversible diffusions
-
J. Kent. Time-reversible diffusions. Adv. in Appl. Probab., 10(4): 819-835, 1978.
-
(1978)
Adv. in Appl. Probab.
, vol.10
, Issue.4
, pp. 819-835
-
-
Kent, J.1
-
22
-
-
77949398114
-
Sparse recovery in convex hulls via entropy penalization
-
To appear
-
V. Koltchinskii. Sparse recovery in convex hulls via entropy penalization, 2008. Ann. Statist., To appear.
-
(2008)
Ann. Statist.
-
-
Koltchinskii, V.1
-
23
-
-
33746478298
-
Information theory and mixing least-squares regressions
-
G. Leung and A. Barron. Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory, 52(8): 3396-3410, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.8
, pp. 3396-3410
-
-
Leung, G.1
Barron, A.2
-
24
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. Ann. Statist., 34(3): 1436-1462, 2006.
-
(2006)
Ann. Statist.
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
25
-
-
0037399538
-
Pac-Bayesian stochastic model selection
-
D. McAllester. Pac-Bayesian stochastic model selection. Machine Learning, 51(1): 5-21, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.1
, pp. 5-21
-
-
McAllester, D.1
-
26
-
-
33846124233
-
Non linear estimation over weak besov spaces and minimax bayes method
-
V. Rivoirard. Non linear estimation over weak Besov spaces and minimax Bayes method. Bernoulli, 12(4): 609-632, 2006.
-
(2006)
Bernoulli
, vol.12
, Issue.4
, pp. 609-632
-
-
Rivoirard, V.1
-
27
-
-
15244341043
-
Langevin diffusions and metropolis-hastings algorithms
-
G. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab., 4(4): 337-357, 2002.
-
(2002)
Methodol. Comput. Appl. Probab.
, vol.4
, Issue.4
, pp. 337-357
-
-
Roberts, G.1
Stramer, O.2
-
28
-
-
0003617670
-
-
Probability and Mathematical Statistics. John Wiley & Sons Inc., New York
-
L. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 2. Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1987.
-
(1987)
Diffusions, Markov Processes, and Martingales
, vol.2
-
-
Rogers, L.1
Williams, D.2
-
29
-
-
44649181578
-
Bayesian inference and optimal design for the sparse linear model
-
M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. J. Mach. Learn. Res., 9: 759-813, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 759-813
-
-
Seeger, M.W.1
-
30
-
-
51049121146
-
High-dimensional generalized linear models and the lasso
-
S. van de Geer. High-dimensional generalized linear models and the Lasso. Ann. Statist., 36(2): 614-645, 2008.
-
(2008)
Ann. Statist.
, vol.36
, Issue.2
, pp. 614-645
-
-
Van De Geer, S.1
-
32
-
-
34347400802
-
An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
-
David P. Wipf and Bhaskar D. Rao. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process., 55(7, part 2): 3704-3716, 2007.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, Issue.7 PART 2
, pp. 3704-3716
-
-
Wipf, D.P.1
Rao, B.D.2
-
33
-
-
29144460670
-
Aggregating regression procedures to improve performance
-
Y. Yang. Aggregating regression procedures to improve performance. Bernoulli, 10(1): 25-47, 2004.
-
(2004)
Bernoulli
, vol.10
, Issue.1
, pp. 25-47
-
-
Yang, Y.1
-
34
-
-
34548074170
-
Embracing statistical challenges in the information technology age
-
B. Yu. Embracing statistical challenges in the information technology age. Technometrics, 49(3): 237-248, 2007.
-
(2007)
Technometrics
, vol.49
, Issue.3
, pp. 237-248
-
-
Yu, B.1
-
35
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B, 67(2): 301-320, 2005.
-
(2005)
J. R. Stat. Soc. Ser. B
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
36
-
-
50949096321
-
The sparsity and biais of the lasso selection in high-dimensionallinear regression
-
C.H. Zhang and J. Huang. The sparsity and biais of the Lasso selection in high-dimensionallinear regression. Ann. Statist., 36: 1567-1594, 2008.
-
(2008)
Ann. Statist.
, vol.36
, pp. 1567-1594
-
-
Zhang, C.H.1
Huang, J.2
-
37
-
-
33845263263
-
On model selection consistency of lasso
-
P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7: 2541-2563, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
|