메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Sparse regression learning by aggregation and langevin Monte-Carlo

Author keywords

[No Author keywords available]

Indexed keywords

DETERMINISTIC DESIGN; FINITE-DIMENSIONAL LINEAR SPACES; LANGEVIN MONTE-CARLO; LINEAR COMBINATIONS; NUMERICAL EXPERIMENTS; ORACLE INEQUALITIES; REGRESSION FUNCTION; TEMPERATURE PARAMETERS;

EID: 84898067794     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (37)
  • 1
    • 50449094780 scopus 로고    scopus 로고
    • On optimality of Bayesian testimation in the normal means problem
    • F. Abramovich, V. Grinshtein, and M. Pensky. On optimality of Bayesian testimation in the normal means problem. Ann. Statist., 35: 2261-2286, 2007.
    • (2007) Ann. Statist. , vol.35 , pp. 2261-2286
    • Abramovich, F.1    Grinshtein, V.2    Pensky, M.3
  • 2
    • 79960993628 scopus 로고    scopus 로고
    • Pac-Bayesian bounds for randomized empirical risk minimizers
    • P. Alquier. Pac-Bayesian bounds for randomized empirical risk minimizers. Math. Methods Statist., 17(4): 1-26, 2008.
    • (2008) Math. Methods Statist. , vol.17 , Issue.4 , pp. 1-26
    • Alquier, P.1
  • 3
    • 85028744723 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • To appear
    • J.-Y. Audibert. Fast learning rates in statistical inference through aggregation, 2008. Ann. Statist., To appear.
    • (2008) Ann. Statist.
    • Audibert, J.-Y.1
  • 6
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • F. Bunea, A. B. Tsybakov, and M. Wegkamp. Aggregation for Gaussian regression. Ann. Statist., 35(4): 1674-1697, 2007.
    • (2007) Ann. Statist. , vol.35 , Issue.4 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.3
  • 10
    • 4544304381 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. IEEE Trans. Inform. Theory, 50(9): 2050-2057, 2004.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , Issue.9 , pp. 2050-2057
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 12
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • E. Candès and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12): 5406-5425, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candès, E.1    Tao, T.2
  • 13
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • E. Candès and T. Tao. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35(6): 2313-2351, 2007.
    • (2007) Ann. Statist. , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 14
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • D. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1): 6-18, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.1    Elad, M.2    Temlyakov, V.3
  • 16
    • 70350003059 scopus 로고    scopus 로고
    • Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity
    • A. S. Dalalyan and A.B. Tsybakov. Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity. Mach. Learn., 72(1-2): 39-61, 2008.
    • (2008) Mach. Learn. , vol.72 , Issue.1-2 , pp. 39-61
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 18
    • 0032164946 scopus 로고    scopus 로고
    • Sequential prediction of individual sequences under general loss functions
    • D. Haussler, J. Kivinen, and M. Warmuth. Sequential prediction of individual sequences under general loss functions. IEEE Trans. Inform. Theory, 44(5): 1906-1925, 1998.
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.5 , pp. 1906-1925
    • Haussler, D.1    Kivinen, J.2    Warmuth, M.3
  • 20
    • 18444410406 scopus 로고    scopus 로고
    • Empirical bayes selection of wavelet thresholds
    • I. Johnstone and B.W. Silverman. Empirical Bayes selection of wavelet thresholds. Ann. Statist, 33: 1700-1752, 2005.
    • (2005) Ann. Statist , vol.33 , pp. 1700-1752
    • Johnstone, I.1    Silverman, B.W.2
  • 21
    • 0001306694 scopus 로고
    • Time-reversible diffusions
    • J. Kent. Time-reversible diffusions. Adv. in Appl. Probab., 10(4): 819-835, 1978.
    • (1978) Adv. in Appl. Probab. , vol.10 , Issue.4 , pp. 819-835
    • Kent, J.1
  • 22
    • 77949398114 scopus 로고    scopus 로고
    • Sparse recovery in convex hulls via entropy penalization
    • To appear
    • V. Koltchinskii. Sparse recovery in convex hulls via entropy penalization, 2008. Ann. Statist., To appear.
    • (2008) Ann. Statist.
    • Koltchinskii, V.1
  • 23
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • G. Leung and A. Barron. Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory, 52(8): 3396-3410, 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.8 , pp. 3396-3410
    • Leung, G.1    Barron, A.2
  • 24
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. Ann. Statist., 34(3): 1436-1462, 2006.
    • (2006) Ann. Statist. , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 25
    • 0037399538 scopus 로고    scopus 로고
    • Pac-Bayesian stochastic model selection
    • D. McAllester. Pac-Bayesian stochastic model selection. Machine Learning, 51(1): 5-21, 2003.
    • (2003) Machine Learning , vol.51 , Issue.1 , pp. 5-21
    • McAllester, D.1
  • 26
    • 33846124233 scopus 로고    scopus 로고
    • Non linear estimation over weak besov spaces and minimax bayes method
    • V. Rivoirard. Non linear estimation over weak Besov spaces and minimax Bayes method. Bernoulli, 12(4): 609-632, 2006.
    • (2006) Bernoulli , vol.12 , Issue.4 , pp. 609-632
    • Rivoirard, V.1
  • 27
    • 15244341043 scopus 로고    scopus 로고
    • Langevin diffusions and metropolis-hastings algorithms
    • G. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab., 4(4): 337-357, 2002.
    • (2002) Methodol. Comput. Appl. Probab. , vol.4 , Issue.4 , pp. 337-357
    • Roberts, G.1    Stramer, O.2
  • 29
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • M. W. Seeger. Bayesian inference and optimal design for the sparse linear model. J. Mach. Learn. Res., 9: 759-813, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 759-813
    • Seeger, M.W.1
  • 30
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • S. van de Geer. High-dimensional generalized linear models and the Lasso. Ann. Statist., 36(2): 614-645, 2008.
    • (2008) Ann. Statist. , vol.36 , Issue.2 , pp. 614-645
    • Van De Geer, S.1
  • 32
    • 34347400802 scopus 로고    scopus 로고
    • An empirical Bayesian strategy for solving the simultaneous sparse approximation problem
    • David P. Wipf and Bhaskar D. Rao. An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Trans. Signal Process., 55(7, part 2): 3704-3716, 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.7 PART 2 , pp. 3704-3716
    • Wipf, D.P.1    Rao, B.D.2
  • 33
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • Y. Yang. Aggregating regression procedures to improve performance. Bernoulli, 10(1): 25-47, 2004.
    • (2004) Bernoulli , vol.10 , Issue.1 , pp. 25-47
    • Yang, Y.1
  • 34
    • 34548074170 scopus 로고    scopus 로고
    • Embracing statistical challenges in the information technology age
    • B. Yu. Embracing statistical challenges in the information technology age. Technometrics, 49(3): 237-248, 2007.
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 237-248
    • Yu, B.1
  • 35
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B, 67(2): 301-320, 2005.
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 36
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and biais of the lasso selection in high-dimensionallinear regression
    • C.H. Zhang and J. Huang. The sparsity and biais of the Lasso selection in high-dimensionallinear regression. Ann. Statist., 36: 1567-1594, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 37
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7: 2541-2563, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.