메뉴 건너뛰기




Volumn 46, Issue 3, 2013, Pages 845-854

Parsimonious Mahalanobis kernel for the classification of high dimensional data

Author keywords

High dimensional data; High dimensional discriminant analysis; Hyperspectral imagery; Kernel methods; Parsimonious Mahalanobis kernel; SVM

Indexed keywords

HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; HYPERSPECTRAL IMAGERY; KERNEL METHODS; MAHALANOBIS; SVM;

EID: 84870246773     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.09.009     Document Type: Article
Times cited : (24)

References (47)
  • 1
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on sub space clustering, pattern-based clustering, and correlation clustering.
    • 10.1145/1497577.1497578
    • H.-P. Kriegel, P. Kröger, and A. Zimek Clustering high-dimensional data: a survey on sub space clustering, pattern-based clustering, and correlation clustering. in: Proceedings of the ACM Transactions on Knowledge Discovery Data 3 1 2009 1:1 1:58 10.1145/1497577.1497578
    • (2009) Proceedings of the ACM Transactions on Knowledge Discovery Data , vol.3 , Issue.1 , pp. 11-158
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 2
  • 3
    • 2142816603 scopus 로고    scopus 로고
    • A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles Pattern Recognition 37 6 2004 1097 1116
    • (2004) Pattern Recognition , vol.37 , Issue.6 , pp. 1097-1116
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 5
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high dimensional space geometrical, statistical and asymptotical properties of multivariate data
    • L. Jimenez, and D.A. Landgrebe Supervised classification in high dimensional space geometrical, statistical and asymptotical properties of multivariate data IEEE Transactions on Systems, Man, and Cybernetics B 28 1 1998 39 54
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics B , vol.28 , Issue.1 , pp. 39-54
    • Jimenez, L.1    Landgrebe, D.A.2
  • 7
  • 9
    • 4344591743 scopus 로고    scopus 로고
    • Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction
    • L. Yang Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction IEEE Transactions on Pattern Analysis and Machine Intelligence 26 9 2004 1243 1246
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.9 , pp. 1243-1246
    • Yang, L.1
  • 11
    • 33847199121 scopus 로고    scopus 로고
    • V. Piuri (ed.), IOS Press, Amsterdam, The Netherlands
    • M. Verleysen, Learning high dimensional data, in: V. Piuri (ed.), IOS Press, Amsterdam, The Netherlands, 2003.
    • (2003) Learning High Dimensional Data
    • Verleysen, M.1
  • 17
  • 19
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M.E. Tipping, and C.M. Bishop Mixtures of probabilistic principal component analyzers Neural Computation 11 2 1999 443 482
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 20
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
    • J. Baek, G.J. McLachlan, and L.K. Flack Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data IEEE Transactions on Pattern Analysis and Machine Intelligence 32 7 2010 1298 1309
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , Issue.7 , pp. 1298-1309
    • Baek, J.1    McLachlan, G.J.2    Flack, L.K.3
  • 24
    • 77954662106 scopus 로고    scopus 로고
    • The Curse of Highly Variable Functions for Local Kernel Machines
    • Y. Weiss, B. Sch ö lkopf, J. Platt (Eds.) (NIPS?05), MIT Press
    • Y. Bengio, O. Delalleau, N. Le Roux, The Curse of Highly Variable Functions for Local Kernel Machines, in: Y. Weiss, B. Sch ö lkopf, J. Platt (Eds.), Advances in Neural Information Processing Systems 18 (NIPS?05), MIT Press, 2006, pp. 107-114.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 107-114
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 27
    • 33749424680 scopus 로고    scopus 로고
    • Support Vector Regression Using Mahalanobis Kernels
    • F. Schwenker, S. Marinai (Eds.) Springer Berlin/Heidelberg
    • Y. Kamada, S. Abe, Support Vector Regression Using Mahalanobis Kernels, in: F. Schwenker, S. Marinai (Eds.), Artificial Neural Networks in Pattern Recognition, Lecture Notes in Computer Science, vol. 4087, Springer Berlin/Heidelberg, 2006, pp. 144-152.
    • (2006) Artificial Neural Networks in Pattern Recognition, Lecture Notes in Computer Science , vol.4087 , pp. 144-152
    • Kamada, Y.1    Abe, S.2
  • 28
    • 34548651702 scopus 로고    scopus 로고
    • Weighted Mahalanobis distance kernels for support vector machines
    • D. Wang, D. Yeung, and E. Tsang Weighted Mahalanobis distance kernels for support vector machines IEEE Transactions on Neural Networks 18 5 2007 1453 1462
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.5 , pp. 1453-1462
    • Wang, D.1    Yeung, D.2    Tsang, E.3
  • 31
    • 34248634049 scopus 로고    scopus 로고
    • A geometrical method to improve performance of the vector machine
    • P. Williams, S. Li, J. Feng, and S. Wu A geometrical method to improve performance of the vector machine IEEE Transactions on Neural Network 18 3 2007 942 947
    • (2007) IEEE Transactions on Neural Network , vol.18 , Issue.3 , pp. 942-947
    • Williams, P.1    Li, S.2    Feng, J.3    Wu, S.4
  • 32
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J. Burges A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 1998 121 167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 33
    • 77951258869 scopus 로고    scopus 로고
    • SVM-based feature extraction for face recognition
    • S.-K. Kim, Y.J. Park, K.-A. Toh, and S. Lee SVM-based feature extraction for face recognition Pattern Recognition 43 8 2010 2871 2881
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2871-2881
    • Kim, S.-K.1    Park, Y.J.2    Toh, K.-A.3    Lee, S.4
  • 38
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • S.S. Keerthi Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms IEEE Transactions on Neural Network 13 5 2002 1225 1229
    • (2002) IEEE Transactions on Neural Network , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 39
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.-W. H., C.-J. L., A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Network 13 (2) (2002) 415 -425.
    • (2002) IEEE Transactions on Neural Network , vol.13 , Issue.2 , pp. 415-425
    • H, C.-W.1    L, C.-J.2
  • 41
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • R.B. Cattell The scree test for the number of factors Multivariate Behavioral Research 1 2 1966 245 276
    • (1966) Multivariate Behavioral Research , vol.1 , Issue.2 , pp. 245-276
    • Cattell, R.B.1
  • 43
    • 0004310291 scopus 로고    scopus 로고
    • Research Systems Inc. (RSI), Boulder, CO
    • ENVI User's Guide, Research Systems Inc. (RSI), Boulder, CO.
    • ENVI User's Guide
  • 45
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model The Annals of Statistics 6 2 1978 461 464
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 46
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • C.H. Chen, and P.-G.P. Ho Statistical pattern recognition in remote sensing Pattern Recognition 41 9 2008 2731 2741
    • (2008) Pattern Recognition , vol.41 , Issue.9 , pp. 2731-2741
    • Chen, C.H.1    Ho, P.-G.P.2
  • 47
    • 80053500222 scopus 로고    scopus 로고
    • Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA
    • C. Bouveyron, G. Celeux, and S. Girard Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA Pattern Recognition Letters 32 14 2011 1706 1713
    • (2011) Pattern Recognition Letters , vol.32 , Issue.14 , pp. 1706-1713
    • Bouveyron, C.1    Celeux, G.2    Girard, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.