메뉴 건너뛰기




Volumn , Issue , 2010, Pages 3724-3727

Mahalanobis kernel for the classification of hyperspectral images

Author keywords

Classification; Hyper spectral images; Mahalanobis kernel; Probabilistic principal component analysis; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); COVARIANCE MATRIX; INVERSE PROBLEMS; REMOTE SENSING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 78650897460     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2010.5651956     Document Type: Conference Paper
Times cited : (11)

References (16)
  • 5
    • 34248634049 scopus 로고    scopus 로고
    • A geometrical method to improve performance of the vector machine
    • May
    • P. Williams, S. Li, J. Feng, and S. Wu, "A geometrical method to improve performance of the vector machine," IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 942-947, May 2007.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 942-947
    • Williams, P.1    Li, S.2    Feng, J.3    Wu, S.4
  • 7
    • 67649789090 scopus 로고    scopus 로고
    • Gradient optimization for multiple kernel's parameters in support vector machines classification
    • IGARSS 2008. IEEE International, July
    • A. Villa, M. Fauvel, J. Chanussot, P. Gamba, and J. A. Benediktsson, "Gradient optimization for multiple kernel's parameters in support vector machines classification," in Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, July 2008.
    • (2008) Geoscience and Remote Sensing Symposium, 2008
    • Villa, A.1    Fauvel, M.2    Chanussot, J.3    Gamba, P.4    Benediktsson, J.A.5
  • 9
    • 33646251134 scopus 로고    scopus 로고
    • Training of support vector machines with mahalanobis kernels
    • Lecture Notes in Computer Science Springer Berlin/Heidelberg
    • S. Abe, "Training of support vector machines with Mahalanobis kernels," in Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, Lecture Notes in Computer Science, pp. 571-576. Springer Berlin/Heidelberg, 2005.
    • (2005) Artificial Neural Networks: Formal Models and their Applications - ICANN 2005 , pp. 571-576
    • Abe, S.1
  • 10
    • 0013110835 scopus 로고    scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
    • C. R. Vogel, Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
    • (2002) Computational Methods for Inverse Problems
    • Vogel, C.R.1
  • 13
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Series B (Statistical Methodology)
    • M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol. 61, no. 3, pp. 611-622, 1999.
    • (1999) Journal of the Royal Statistical Society , vol.61 , Issue.3 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 14
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," The annals of Statistics, vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 16
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Machine Learning, vol. 46, no. 1-3, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.