-
1
-
-
51049096780
-
Kernel methods in machine learning
-
T. Hofmann, B. Schölkpof, and A. J. Smola, "Kernel methods in machine learning," The annals of statistics, vol. 36, no. 3, pp. 1171-1220, 2008.
-
(2008)
The Annals of Statistics
, vol.36
, Issue.3
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkpof, B.2
Smola, A.J.3
-
5
-
-
34248634049
-
A geometrical method to improve performance of the vector machine
-
May
-
P. Williams, S. Li, J. Feng, and S. Wu, "A geometrical method to improve performance of the vector machine," IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 942-947, May 2007.
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.3
, pp. 942-947
-
-
Williams, P.1
Li, S.2
Feng, J.3
Wu, S.4
-
7
-
-
67649789090
-
Gradient optimization for multiple kernel's parameters in support vector machines classification
-
IGARSS 2008. IEEE International, July
-
A. Villa, M. Fauvel, J. Chanussot, P. Gamba, and J. A. Benediktsson, "Gradient optimization for multiple kernel's parameters in support vector machines classification," in Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, July 2008.
-
(2008)
Geoscience and Remote Sensing Symposium, 2008
-
-
Villa, A.1
Fauvel, M.2
Chanussot, J.3
Gamba, P.4
Benediktsson, J.A.5
-
8
-
-
78650887658
-
Hyperspectral image classification with mahalanobis relevance vector machines
-
IGARSS 2007. IEEE International, July
-
G. Camps-Valls, A. Rodrigo-Gonzalez, J. Muoz-Mari, L. Gomez-Chova, and J. Calpe-Maravilla, "Hyperspectral image classification with Mahalanobis relevance vector machines," in Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, July 2007, pp. 3802-3805.
-
(2007)
Geoscience and Remote Sensing Symposium, 2007
, pp. 3802-3805
-
-
Camps-Valls, G.1
Rodrigo-Gonzalez, A.2
Muoz-Mari, J.3
Gomez-Chova, L.4
Calpe-Maravilla, J.5
-
9
-
-
33646251134
-
Training of support vector machines with mahalanobis kernels
-
Lecture Notes in Computer Science Springer Berlin/Heidelberg
-
S. Abe, "Training of support vector machines with Mahalanobis kernels," in Artificial Neural Networks: Formal Models and Their Applications - ICANN 2005, Lecture Notes in Computer Science, pp. 571-576. Springer Berlin/Heidelberg, 2005.
-
(2005)
Artificial Neural Networks: Formal Models and their Applications - ICANN 2005
, pp. 571-576
-
-
Abe, S.1
-
10
-
-
0013110835
-
-
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
-
C. R. Vogel, Computational Methods for Inverse Problems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.
-
(2002)
Computational Methods for Inverse Problems
-
-
Vogel, C.R.1
-
11
-
-
72049089058
-
Machine learning techniques for the inversion of planetary hyperspectrales images
-
Grenoble
-
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, and S. Girard, "Machine learning techniques for the inversion of planetary hyperspectrales images," in Proc. of IEEE Int. Workshop on hyperspectral image and signal processing (WHISPERS-09), Grenoble, 2009.
-
(2009)
Proc. of IEEE Int. Workshop on Hyperspectral Image and Signal Processing (WHISPERS-09)
-
-
Bernard-Michel, C.1
Douté, S.2
Fauvel, M.3
Gardes, L.4
Girard, S.5
-
12
-
-
58149492656
-
Gaussian regularized sliced inverse regression
-
C. Bernard-Michel, L. Gardes, and S. Girard, "Gaussian regularized sliced inverse regression," Statistics and Computing, vol. 19, pp. 85-98, 2009.
-
(2009)
Statistics and Computing
, vol.19
, pp. 85-98
-
-
Bernard-Michel, C.1
Gardes, L.2
Girard, S.3
-
13
-
-
0038959172
-
Probabilistic principal component analysis
-
Series B (Statistical Methodology)
-
M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol. 61, no. 3, pp. 611-622, 1999.
-
(1999)
Journal of the Royal Statistical Society
, vol.61
, Issue.3
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
14
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz, "Estimating the dimension of a model," The annals of Statistics, vol. 6, no. 2, pp. 461-464, 1978.
-
(1978)
The Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
16
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Machine Learning, vol. 46, no. 1-3, pp. 131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
|