메뉴 건너뛰기




Volumn 41, Issue 9, 2008, Pages 2731-2741

Statistical pattern recognition in remote sensing

Author keywords

Contextual information; Markov random field; Neural networks; Remote sensing; Statistical pattern classification; Support vector machine; Vector 2 D autoregressive time series

Indexed keywords

CLASSIFICATION (OF INFORMATION); NEURAL NETWORKS; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 44649165024     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.04.013     Document Type: Article
Times cited : (97)

References (74)
  • 1
    • 84937744538 scopus 로고
    • An optimum character recognition system using decision functions
    • Chow C.K. An optimum character recognition system using decision functions. IEEE Trans. Electron. Comput. EC-6 (1957) 247-254
    • (1957) IEEE Trans. Electron. Comput. , vol.EC-6 , pp. 247-254
    • Chow, C.K.1
  • 2
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M., and Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13 1 (1967) 21-27
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 3
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Paarzen E. On estimation of a probability density function and mode. Ann. Math. Statist. 33 3 (1962) 1065-1076
    • (1962) Ann. Math. Statist. , vol.33 , Issue.3 , pp. 1065-1076
    • Paarzen, E.1
  • 4
    • 84879799188 scopus 로고
    • Estimation of error rates in discriminant analysis
    • Lachenbruch P.S., and Mickey R.M. Estimation of error rates in discriminant analysis. Technometrics 10 (1968) 1-11
    • (1968) Technometrics , vol.10 , pp. 1-11
    • Lachenbruch, P.S.1    Mickey, R.M.2
  • 5
    • 65249157560 scopus 로고
    • The divergence and Bhattacharyya distance measures in signal selection
    • Kailath T. The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. COM-15 (1967) 52-60
    • (1967) IEEE Trans. Commun. Technol. , vol.COM-15 , pp. 52-60
    • Kailath, T.1
  • 8
    • 44649103459 scopus 로고    scopus 로고
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Probability and Statistics, 1967, pp. 281-297.
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Probability and Statistics, 1967, pp. 281-297.
  • 12
    • 44649104035 scopus 로고    scopus 로고
    • Statistical pattern recognition
    • Chen C.H., and Wang P.S.P. (Eds), World Scientific Publishing, Singapore
    • Duin R.P.W., and Tax D.M.J. Statistical pattern recognition. In: Chen C.H., and Wang P.S.P. (Eds). Handbook of Pattern Recognition and Computer Vision. third ed. (2005), World Scientific Publishing, Singapore 3-24
    • (2005) Handbook of Pattern Recognition and Computer Vision. third ed. , pp. 3-24
    • Duin, R.P.W.1    Tax, D.M.J.2
  • 14
    • 0010080071 scopus 로고
    • Application of pattern recognition to remote sensing
    • Fu K.S. (Ed), CRC Press, Boca Raton (Chapter 4)
    • Fu K.S. Application of pattern recognition to remote sensing. In: Fu K.S. (Ed). Applications of Pattern Recognition (1982), CRC Press, Boca Raton (Chapter 4)
    • (1982) Applications of Pattern Recognition
    • Fu, K.S.1
  • 17
    • 0003987134 scopus 로고    scopus 로고
    • Jain A., Bolle R., and Pankanti S. (Eds), Kluwer Academic Publishers, Norwell, MA
    • In: Jain A., Bolle R., and Pankanti S. (Eds). Biometrics: Personal Identification in Networked Society (1999), Kluwer Academic Publishers, Norwell, MA
    • (1999) Biometrics: Personal Identification in Networked Society
  • 18
    • 0342848890 scopus 로고
    • A context algorithm for pattern recognition and image interpretation
    • Welch J.R., and Salter K.G. A context algorithm for pattern recognition and image interpretation. IEEE Trans. Syst. Man Cybernet. 1 (1971) 24-30
    • (1971) IEEE Trans. Syst. Man Cybernet. , vol.1 , pp. 24-30
    • Welch, J.R.1    Salter, K.G.2
  • 20
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images
    • Geman S., and Geman D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 6 (1984) 721-741
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 21
    • 33744481874 scopus 로고    scopus 로고
    • Transform methods in remote sensing information processing
    • Chen C.H. (Ed), World Scientific Publishing, Singapore
    • Chen C.H. Transform methods in remote sensing information processing. In: Chen C.H. (Ed). Frontiers of Remote Sensing Information Processing (2003), World Scientific Publishing, Singapore 23-32
    • (2003) Frontiers of Remote Sensing Information Processing , pp. 23-32
    • Chen, C.H.1
  • 22
    • 44649097747 scopus 로고    scopus 로고
    • Statistical and neural network pattern recognition methods for remote sensing applications
    • Chen C.H., et al. (Ed), World Scientific Publishing, Singapore
    • Benediktsson J.A. Statistical and neural network pattern recognition methods for remote sensing applications. In: Chen C.H., et al. (Ed). Handbook of Pattern Recognition and Computer Vision. second ed. (1999), World Scientific Publishing, Singapore 507-534
    • (1999) Handbook of Pattern Recognition and Computer Vision. second ed. , pp. 507-534
    • Benediktsson, J.A.1
  • 24
    • 3543110152 scopus 로고    scopus 로고
    • Independent component analysis by using joint cumulants and its application to remote sensing images
    • Zhang X., and Chen C.H. Independent component analysis by using joint cumulants and its application to remote sensing images. J. VLSI Signal Process. Syst. 37 2/3 (2004)
    • (2004) J. VLSI Signal Process. Syst. , vol.37 , Issue.2-3
    • Zhang, X.1    Chen, C.H.2
  • 25
    • 33744719449 scopus 로고    scopus 로고
    • Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
    • Wang J., and Chang C.I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sensing 44 4 (2006) 1575-1585
    • (2006) IEEE Trans. Geosci. Remote Sensing , vol.44 , Issue.4 , pp. 1575-1585
    • Wang, J.1    Chang, C.I.2
  • 26
    • 0038475076 scopus 로고    scopus 로고
    • A multiresolution wavelet analysis for SAR image segmentation using statistical separability measures
    • Chen C.H. (Ed), World Scientific, Singapore
    • Chen C.H., and Du Y. A multiresolution wavelet analysis for SAR image segmentation using statistical separability measures. In: Chen C.H. (Ed). Information Processing for Remote Sensing (1999), World Scientific, Singapore 167-184
    • (1999) Information Processing for Remote Sensing , pp. 167-184
    • Chen, C.H.1    Du, Y.2
  • 27
    • 0035391615 scopus 로고    scopus 로고
    • A new search algorithm for feature selection in hyperspectral remote sensing images
    • Serpico S.B., and Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sensing 39 5 (2001) 1360-1367
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.5 , pp. 1360-1367
    • Serpico, S.B.1    Bruzzone, L.2
  • 28
    • 0035391738 scopus 로고    scopus 로고
    • Best-bases feature extraction algorithms for classification of hyperspectral data
    • Kumar S., Ghosh J., and Crawford M.M. Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sensing 39 7 (2001) 1368-1379
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , Issue.7 , pp. 1368-1379
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 29
    • 33847762803 scopus 로고    scopus 로고
    • Feature extractions for small sample size classification problem
    • Kuo B.C., and Chang K.Y. Feature extractions for small sample size classification problem. IEEE Trans. Geosci. Remote Sensing 45 3 (2007) 756-764
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.3 , pp. 756-764
    • Kuo, B.C.1    Chang, K.Y.2
  • 30
    • 33846627768 scopus 로고    scopus 로고
    • Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data
    • Jimenez-Rodriguez L.O., Arzuaga-Cruz E., and Velez-Reyes M. Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data. IEEE Trans. Geosci. Remote Sensing 45 2 (2007) 469-483
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.2 , pp. 469-483
    • Jimenez-Rodriguez, L.O.1    Arzuaga-Cruz, E.2    Velez-Reyes, M.3
  • 32
    • 0141934795 scopus 로고    scopus 로고
    • Polarimetric SAR speckle filtering and terrain classification-an overview
    • Chen C.H. (Ed), World Scientific Publishing, Singapore
    • Lee J.S., and Grunes M.R. Polarimetric SAR speckle filtering and terrain classification-an overview. In: Chen C.H. (Ed). Remote Sensing Information Processing (1999), World Scientific Publishing, Singapore 113-138
    • (1999) Remote Sensing Information Processing , pp. 113-138
    • Lee, J.S.1    Grunes, M.R.2
  • 33
    • 9444290715 scopus 로고    scopus 로고
    • Nearest neighbor decision rule for pixel classification in remote sensing
    • Chen C.H. (Ed), World Scientific Publishing, Singapore
    • Graboswki S., Jozwik A., and Chen C.H. Nearest neighbor decision rule for pixel classification in remote sensing. In: Chen C.H. (Ed). Frontiers of Remote Sensing Information Processing (2003), World Scientific Publishing, Singapore 315-327
    • (2003) Frontiers of Remote Sensing Information Processing , pp. 315-327
    • Graboswki, S.1    Jozwik, A.2    Chen, C.H.3
  • 34
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham J., Chen Y., Crawford M.M., and Gosh J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sensing 43 3 (2005) 492-501
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Gosh, J.4
  • 36
    • 44649089566 scopus 로고    scopus 로고
    • Supervised image classification of multi-spectral images based on statistical machine learning
    • Chen C.H. (Ed), CRC Press, Boca Raton, FL
    • Nishii R., and Eguchi S. Supervised image classification of multi-spectral images based on statistical machine learning. In: Chen C.H. (Ed). Signal and Image Processing for Remote Sensing (2006), CRC Press, Boca Raton, FL 345-371
    • (2006) Signal and Image Processing for Remote Sensing , pp. 345-371
    • Nishii, R.1    Eguchi, S.2
  • 37
    • 85056354006 scopus 로고    scopus 로고
    • Data fusion for remote sensing applications
    • Chen C.H. (Ed), CRC Press, Boca Raton, FL
    • Solberg A.H.S. Data fusion for remote sensing applications. In: Chen C.H. (Ed). Signal and Image Processing for Remote Sensing (2006), CRC Press, Boca Raton, FL 515-537
    • (2006) Signal and Image Processing for Remote Sensing , pp. 515-537
    • Solberg, A.H.S.1
  • 38
    • 0036543957 scopus 로고    scopus 로고
    • Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
    • Smits PC. Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Trans. Geosci. Remote Sensing 40 4 (2002) 801-813
    • (2002) IEEE Trans. Geosci. Remote Sensing , vol.40 , Issue.4 , pp. 801-813
    • Smits, PC.1
  • 39
    • 0026897311 scopus 로고
    • Classification with spatio-temporal interpixel class dependency contexts
    • Jeon B., and Landgrebe D.A. Classification with spatio-temporal interpixel class dependency contexts. IEEE Trans. Geosci. Remote Sensing 30 4 (1992) 663-672
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , Issue.4 , pp. 663-672
    • Jeon, B.1    Landgrebe, D.A.2
  • 40
    • 0018179124 scopus 로고
    • The use of context in pattern recognition
    • Toussaint G.T. The use of context in pattern recognition. Pattern Recognition 10 (1978) 189-204
    • (1978) Pattern Recognition , vol.10 , pp. 189-204
    • Toussaint, G.T.1
  • 41
    • 0020336346 scopus 로고
    • A contextual classification method for recognizing land use in high resolution remote sensing data
    • Wharton S.W. A contextual classification method for recognizing land use in high resolution remote sensing data. Pattern Recognition 15 (1982) 317-324
    • (1982) Pattern Recognition , vol.15 , pp. 317-324
    • Wharton, S.W.1
  • 42
    • 0020498809 scopus 로고
    • Estimation and choice of neighbors in spatial interaction models of image
    • Kashyap R.L., and Chellappa R. Estimation and choice of neighbors in spatial interaction models of image. IEEE Trans. Inf. Theory 29 1 (1983) 60-72
    • (1983) IEEE Trans. Inf. Theory , vol.29 , Issue.1 , pp. 60-72
    • Kashyap, R.L.1    Chellappa, R.2
  • 43
    • 0026358105 scopus 로고
    • Unsupervised context estimation in a mesh of pattern classes for image recognition
    • Dattatreya G.R. Unsupervised context estimation in a mesh of pattern classes for image recognition. Pattern Recognition 24 7 (1991) 685-694
    • (1991) Pattern Recognition , vol.24 , Issue.7 , pp. 685-694
    • Dattatreya, G.R.1
  • 45
    • 0026124056 scopus 로고
    • Compound Gauss-Markov random fields for image estimation
    • Jeng F.C., and Woods J.W. Compound Gauss-Markov random fields for image estimation. IEEE Trans. Signal Process. 39 3 (1991) 683-697
    • (1991) IEEE Trans. Signal Process. , vol.39 , Issue.3 , pp. 683-697
    • Jeng, F.C.1    Woods, J.W.2
  • 47
    • 0031213473 scopus 로고    scopus 로고
    • Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle
    • Figueiredo M.A.T. Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle. IEEE Trans. Image Process. 6 8 (1997) 1089-1101
    • (1997) IEEE Trans. Image Process. , vol.6 , Issue.8 , pp. 1089-1101
    • Figueiredo, M.A.T.1
  • 48
    • 85056325222 scopus 로고    scopus 로고
    • MRF-based remote sensing image classification with automatic model parameter estimation
    • CRC Press, Boca Raton, FL
    • Serpico S.B., and Moser G. MRF-based remote sensing image classification with automatic model parameter estimation. Signal and Image Processing for Remote Sensing (2006), CRC Press, Boca Raton, FL 305-326
    • (2006) Signal and Image Processing for Remote Sensing , pp. 305-326
    • Serpico, S.B.1    Moser, G.2
  • 49
    • 44649188077 scopus 로고    scopus 로고
    • P.G. Ho, Multivariate time series model based support vector machine for multiclass remote sensing image classification and region segmentation, Ph.D. Dissertation, University of Massachusetts Dartmouth, January 2008.
    • P.G. Ho, Multivariate time series model based support vector machine for multiclass remote sensing image classification and region segmentation, Ph.D. Dissertation, University of Massachusetts Dartmouth, January 2008.
  • 50
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Heermann P.D., and Khazenie M. Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Trans. Geosci. Remote Sensing 30 1 (1992) 81-88
    • (1992) IEEE Trans. Geosci. Remote Sensing , vol.30 , Issue.1 , pp. 81-88
    • Heermann, P.D.1    Khazenie, M.2
  • 51
    • 0029307334 scopus 로고
    • Classification of multi-sensor remote-sensing images by structured neural networks
    • Serpico S.B., and Roli F. Classification of multi-sensor remote-sensing images by structured neural networks. IEEE Trans. Geosci. Remote Sensing 33 3 (1995) 562-578
    • (1995) IEEE Trans. Geosci. Remote Sensing , vol.33 , Issue.3 , pp. 562-578
    • Serpico, S.B.1    Roli, F.2
  • 52
    • 0031098234 scopus 로고    scopus 로고
    • ART neural networks for remote sensing: vegetation for Landsat TM and terrain data
    • Carpenter G.A., et al. ART neural networks for remote sensing: vegetation for Landsat TM and terrain data. IEEE Trans. Geosci. Remote Sensing 35 2 (1997) 308-325
    • (1997) IEEE Trans. Geosci. Remote Sensing , vol.35 , Issue.2 , pp. 308-325
    • Carpenter, G.A.1
  • 53
    • 0033099197 scopus 로고    scopus 로고
    • A technique of the selection of kernel-function parameters in RBF neural networks for classification of remote sensing images
    • Bruzzone L., and Prieto D. A technique of the selection of kernel-function parameters in RBF neural networks for classification of remote sensing images. IEEE Trans. Geosci. Remote Sensing 37 2 (1999) 1179-1184
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , Issue.2 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.2
  • 54
    • 0034546967 scopus 로고    scopus 로고
    • C.H. Chen, B. Shrestha, Classification of multi-sensor remote sensing images using self-organizing feature maps and radial basis function networks, in: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Hawaii, 2000.
    • C.H. Chen, B. Shrestha, Classification of multi-sensor remote sensing images using self-organizing feature maps and radial basis function networks, in: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Hawaii, 2000.
  • 55
    • 33847695328 scopus 로고    scopus 로고
    • A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks
    • Ghosh S., Bruzzone L., Patra S., Bovolo F., and Ghosh A. A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks. IEEE Trans. Geosci. Remote Sensing 45 3 (2007) 778-789
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.3 , pp. 778-789
    • Ghosh, S.1    Bruzzone, L.2    Patra, S.3    Bovolo, F.4    Ghosh, A.5
  • 56
    • 34548215072 scopus 로고    scopus 로고
    • Consensual and hierarchical classification of remotely sensed multispectral images
    • Lee J., and Ersoy O.K. Consensual and hierarchical classification of remotely sensed multispectral images. IEEE Trans. Geosci. Remote Sensing 45 9 (2007) 2953-2963
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.9 , pp. 2953-2963
    • Lee, J.1    Ersoy, O.K.2
  • 58
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F., and Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sensing 42 (2004) 1778-1790
    • (2004) IEEE Trans. Geosci. Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 59
    • 34948836126 scopus 로고    scopus 로고
    • F. Bovolo, L. Bruzzone, M. Marconcini, A novel context-sensitive SVM for classification of remote sensing images, in: Proceedings of IGARSS, Denver, 2006.
    • F. Bovolo, L. Bruzzone, M. Marconcini, A novel context-sensitive SVM for classification of remote sensing images, in: Proceedings of IGARSS, Denver, 2006.
  • 60
    • 84931429688 scopus 로고    scopus 로고
    • SAR image classification by support vector machine
    • Chen C.H. (Ed), CRC Press, Boca Raton, FL
    • Yoshioka M., Fujinaka T., and Omatu S. SAR image classification by support vector machine. In: Chen C.H. (Ed). Signal and Image Processing for Remote Sensing (2006), CRC Press, Boca Raton, FL 607-619
    • (2006) Signal and Image Processing for Remote Sensing , pp. 607-619
    • Yoshioka, M.1    Fujinaka, T.2    Omatu, S.3
  • 61
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of support vector machines for classification of multisensor data
    • Waske B., and Benediktsson J.A. Fusion of support vector machines for classification of multisensor data. IEEE Trans. Geosci. Remote Sensing 45 12 (2007) 3858-3868
    • (2007) IEEE Trans. Geosci. Remote Sensing , vol.45 , Issue.12 , pp. 3858-3868
    • Waske, B.1    Benediktsson, J.A.2
  • 62
    • 37249063148 scopus 로고    scopus 로고
    • Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes
    • Zhang B., O'Neill K., Kong J.A., and Gregorczyk T.M. Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes. IEEE Trans. Geosci. Remote Sensing 46 1 (2008) 159-171
    • (2008) IEEE Trans. Geosci. Remote Sensing , vol.46 , Issue.1 , pp. 159-171
    • Zhang, B.1    O'Neill, K.2    Kong, J.A.3    Gregorczyk, T.M.4
  • 63
    • 44649106530 scopus 로고    scopus 로고
    • R.B. Congalton, A review of assessing the accuracy of classifications of remotely sensed data, in: K.L. Fenstermaker (Ed.), Remote Sensing Thematic Accuracy Assessment: A Compendium, American Society of Photogrammetry and Remote Sensing, Bethesda, pp. 73-96.
    • R.B. Congalton, A review of assessing the accuracy of classifications of remotely sensed data, in: K.L. Fenstermaker (Ed.), Remote Sensing Thematic Accuracy Assessment: A Compendium, American Society of Photogrammetry and Remote Sensing, Bethesda, pp. 73-96.
  • 64
    • 14644406807 scopus 로고    scopus 로고
    • Results and implications of a study of fifteen years of satellite image classification experiments
    • Wilkinson G. Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Trans. Geosci. Remote Sensing 43 (2005) 433-440
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , pp. 433-440
    • Wilkinson, G.1
  • 65
    • 33644549989 scopus 로고    scopus 로고
    • J. Richards, Is there a best classifier?, in: Proceedings of SPIE, vol. 5982, 2005, pp. 1-12.
    • J. Richards, Is there a best classifier?, in: Proceedings of SPIE, vol. 5982, 2005, pp. 1-12.
  • 67
    • 44649202293 scopus 로고    scopus 로고
    • Remote sensing sensors: capabilities and information processing requirements
    • Chen C.H. (Ed), World Scientific Publishing, Singapore
    • Richards J. Remote sensing sensors: capabilities and information processing requirements. In: Chen C.H. (Ed). Frontiers of Remote Sensing Information Processing (2003), World Scientific Publishing, Singapore 3-22
    • (2003) Frontiers of Remote Sensing Information Processing , pp. 3-22
    • Richards, J.1
  • 69
    • 44649148566 scopus 로고    scopus 로고
    • Multisensor fusion with hyperspectral imaging data: detection and classification
    • Chen C.H., and Wang P.S.P. (Eds), World Scientific, Singapore
    • Hsu S.M., and Burke H. Multisensor fusion with hyperspectral imaging data: detection and classification. In: Chen C.H., and Wang P.S.P. (Eds). Handbook of Pattern Recognition and Computer Vision (2005), World Scientific, Singapore 347-364
    • (2005) Handbook of Pattern Recognition and Computer Vision , pp. 347-364
    • Hsu, S.M.1    Burke, H.2
  • 70
    • 44649149756 scopus 로고    scopus 로고
    • Advanced classification techniques: partially supervised approaches
    • World Scientific, Singapore
    • Bruzzone L., and Cossu R. Advanced classification techniques: partially supervised approaches. Frontiers of Remote Sensing Information Processing (2005), World Scientific, Singapore 285-314
    • (2005) Frontiers of Remote Sensing Information Processing , pp. 285-314
    • Bruzzone, L.1    Cossu, R.2
  • 71
    • 44649095873 scopus 로고    scopus 로고
    • Mixed pixel classification: an overview
    • Chen C.H. (Ed), World Scientific, Singapore
    • Petrou M. Mixed pixel classification: an overview. In: Chen C.H. (Ed). Information Processing for Remote Sensing (1999), World Scientific, Singapore 69-83
    • (1999) Information Processing for Remote Sensing , pp. 69-83
    • Petrou, M.1
  • 73
    • 36348973607 scopus 로고    scopus 로고
    • D.A. Clausi, S. Aksoy, J.C. Tilton (Guest Eds.), Special issue on pattern recognition in remote sensing, IEEE Trans. Geosci. Remote Sensing 45 (12) 2007.
    • D.A. Clausi, S. Aksoy, J.C. Tilton (Guest Eds.), Special issue on pattern recognition in remote sensing, IEEE Trans. Geosci. Remote Sensing 45 (12) 2007.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.