메뉴 건너뛰기




Volumn 34, Issue 1-2, 2013, Pages 203-217

Bearing performance degradation assessment based on the rough support vector data description

Author keywords

Incremental learning; Performance degradation assessment method; Rough support vector data description

Indexed keywords

ASSESSMENT INDICATOR; ASSESSMENT PROCESS; BEARING PERFORMANCE; CRITICAL ISSUES; DISTANCE INFORMATION; INCREMENTAL LEARNING; ONE-CLASS CLASSIFIER; OVERFITTING; PERFORMANCE DEGRADATION ASSESSMENT; ROUGH SET; SPATIAL POSITIONS; SUPPORT VECTOR DATA DESCRIPTION;

EID: 84870241112     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2012.08.008     Document Type: Article
Times cited : (53)

References (34)
  • 1
    • 58049182562 scopus 로고    scopus 로고
    • Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description
    • Y. Pan, J. Chen, and L. Guo Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description Mech. Syst. Signal Process. 23 2009 669 681
    • (2009) Mech. Syst. Signal Process. , vol.23 , pp. 669-681
    • Pan, Y.1    Chen, J.2    Guo, L.3
  • 2
    • 79251502886 scopus 로고    scopus 로고
    • A hybrid model for bearing performance degradation assessment based on support vector data description and fuzzy c-means
    • Y.N. Pan, J. Chen, and G.M. Dong A hybrid model for bearing performance degradation assessment based on support vector data description and fuzzy c-means Proc. Inst. Mech. Eng.Part C: J. Mech.Eng. Sci. 223 2009 2687 2695
    • (2009) Proc. Inst. Mech. Eng.Part C: J. Mech.Eng. Sci. , vol.223 , pp. 2687-2695
    • Pan, Y.N.1    Chen, J.2    Dong, G.M.3
  • 3
    • 69249117793 scopus 로고    scopus 로고
    • Spectral entropy: A complementary index for rolling element bearing performance degradation assessment
    • Y.N. Pan, J. Chen, and X.L. Li Spectral entropy: A complementary index for rolling element bearing performance degradation assessment Proc. Inst. Mech. Eng.Part C: J. Mech.Eng. Sci. 223 2009 1223 1231
    • (2009) Proc. Inst. Mech. Eng.Part C: J. Mech.Eng. Sci. , vol.223 , pp. 1223-1231
    • Pan, Y.N.1    Chen, J.2    Li, X.L.3
  • 4
    • 70350764824 scopus 로고    scopus 로고
    • Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means
    • Y. Pan, J. Chen, and X. Li Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means Mech. Syst. Signal Process. 24 2010 559 566
    • (2010) Mech. Syst. Signal Process. , vol.24 , pp. 559-566
    • Pan, Y.1    Chen, J.2    Li, X.3
  • 5
    • 67849106386 scopus 로고    scopus 로고
    • A novel method for machine performance degradation assessment based on fixed cycle features test
    • L. Liao, and J. Lee A novel method for machine performance degradation assessment based on fixed cycle features test J. Sound Vib. 326 2009 894 908
    • (2009) J. Sound Vib. , vol.326 , pp. 894-908
    • Liao, L.1    Lee, J.2
  • 6
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D.M.J. Tax, and R.P.W. Duin Support vector domain description Pattern Recognition Lett. 20 1999 1191 1199 (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 8
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. Tax, and R. Duin Support vector data description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 9
    • 79958136331 scopus 로고    scopus 로고
    • Batch process monitoring based on support vector data description method
    • Z. Ge, F. Gao, and Z. Song Batch process monitoring based on support vector data description method J. Process Control 21 2011 949 959
    • (2011) J. Process Control , vol.21 , pp. 949-959
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 10
    • 79953676840 scopus 로고    scopus 로고
    • Approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor
    • H. Luo, J.C.Y. Wang, and A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor Expert Syst. Appl. 38 2011 10554 10561
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10554-10561
    • Luo, H.1    Wang, J.C.Y.2    Svdd, A.3
  • 11
    • 80054941403 scopus 로고    scopus 로고
    • Kernel k-means clustering based local support vector domain description fault detection of multimodal processes
    • I.B. Khediri, C. Weihs, and M. Limam Kernel k-means clustering based local support vector domain description fault detection of multimodal processes Expert Syst. Appl. 39 2012 2166 2171
    • (2012) Expert Syst. Appl. , vol.39 , pp. 2166-2171
    • Khediri, I.B.1    Weihs, C.2    Limam, M.3
  • 12
    • 51649118270 scopus 로고    scopus 로고
    • A boundary method for outlier detection based on support vector domain description
    • S.M. Guo, L.C. Chen, and J.S.H. Tsai A boundary method for outlier detection based on support vector domain description Patt. Recog. 42 2009 77 83
    • (2009) Patt. Recog. , vol.42 , pp. 77-83
    • Guo, S.M.1    Chen, L.C.2    Tsai, J.S.H.3
  • 13
    • 56349104733 scopus 로고    scopus 로고
    • Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble
    • Y.-H. Liu, S.-H. Lin, Y.-L. Hsueh, and M.-J. Lee Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble Expert Syst. Appl. 36 2009 1978 1998
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1978-1998
    • Liu, Y.-H.1    Lin, S.-H.2    Hsueh, Y.-L.3    Lee, M.-J.4
  • 15
    • 84871002478 scopus 로고    scopus 로고
    • Rough sets and intelligent data analysis
    • P. Zdzisław Rough sets and intelligent data analysis Inf. Sci. (Ny) 147 2002 1 12
    • (2002) Inf. Sci. (Ny) , vol.147 , pp. 1-12
    • Zdzisław, P.1
  • 16
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • DOI 10.1016/j.ins.2006.06.003, PII S0020025506001484
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Inf. Sci, (Ny) 177 2007 3 27 (Pubitemid 44556698)
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 17
    • 34250741488 scopus 로고    scopus 로고
    • Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification
    • DOI 10.1016/j.ins.2007.03.028, PII S0020025507001594
    • P. Lingras, and C. Butz Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification Inf, Sci. (Ny) 177 2007 3782 3798 (Pubitemid 46961980)
    • (2007) Information Sciences , vol.177 , Issue.18 , pp. 3782-3798
    • Lingras, P.1    Butz, C.2
  • 18
    • 39749154117 scopus 로고    scopus 로고
    • A rough margin based support vector machine
    • J. Zhang, and Y. Wang A rough margin based support vector machine Inf. Sci. (Ny) 178 2008 2204 2214
    • (2008) Inf. Sci. (Ny) , vol.178 , pp. 2204-2214
    • Zhang, J.1    Wang, Y.2
  • 19
    • 64049119301 scopus 로고    scopus 로고
    • Rough ν-support vector regression
    • Y. Zhao, and J. Sun Rough ν-support vector regression Expert Syst. Appl. 36 2009 9793 9798
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9793-9798
    • Zhao, Y.1    Sun, J.2
  • 20
    • 22844441843 scopus 로고    scopus 로고
    • Rough support vector clustering
    • DOI 10.1016/j.patcog.2004.12.016, PII S0031320305001354
    • S. Asharaf, S.K. Shevade, and M.N. Murty Rough support vector clustering Patt. Recog. 38 2005 1779 1783 (Pubitemid 41037112)
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1779-1783
    • Asharaf, S.1    Shevade, S.K.2    Murty, M.N.3
  • 21
    • 79251488790 scopus 로고    scopus 로고
    • Support vector data description for fusion of multiple health indicators for enhancing gearbox fault diagnosis and prognosis
    • D. Wang, P.W. Tse, W. Guo, and Q. Miao Support vector data description for fusion of multiple health indicators for enhancing gearbox fault diagnosis and prognosis Meas. Sci. Technol. 22 2011 025102
    • (2011) Meas. Sci. Technol. , vol.22 , pp. 025102
    • Wang, D.1    Tse, P.W.2    Guo, W.3    Miao, Q.4
  • 22
    • 79151475707 scopus 로고    scopus 로고
    • High-speed inline defect detection for TFT-LCD array process using a novel support vector data description
    • Y.-H. Liu, Y.-C. Liu, and Y.-Z. Chen High-speed inline defect detection for TFT-LCD array process using a novel support vector data description Expert Syst. Appl. 38 2011 6222 6231
    • (2011) Expert Syst. Appl. , vol.38 , pp. 6222-6231
    • Liu, Y.-H.1    Liu, Y.-C.2    Chen, Y.-Z.3
  • 26
    • 45549087797 scopus 로고    scopus 로고
    • General support vector representation machine for one-class classification of non-stationary classes
    • F. Camci, and R.B. Chinnam General support vector representation machine for one-class classification of non-stationary classes Pattern Recognition 41 2008 3021 3034
    • (2008) Pattern Recognition , vol.41 , pp. 3021-3034
    • Camci, F.1    Chinnam, R.B.2
  • 27
    • 0037991523 scopus 로고    scopus 로고
    • Online training of support vector classifier
    • DOI 10.1016/S0031-3203(03)00038-4
    • K.W. Lau, and Q.H. Wu Online training of support vector classifier Pattern Recognition 36 2003 1913 1920 (Pubitemid 36551678)
    • (2003) Pattern Recognition , vol.36 , Issue.8 , pp. 1913-1920
    • Lau, K.W.1    Wu, Q.H.2
  • 29
    • 80053576495 scopus 로고    scopus 로고
    • Creating and measuring diversity in multiple classifier systems using support vector data description
    • M.S. Haghighi, A. Vahedian, and H.S. Yazdi Creating and measuring diversity in multiple classifier systems using support vector data description Appl. Soft Comput. 11 2011 4931 4942
    • (2011) Appl. Soft Comput. , vol.11 , pp. 4931-4942
    • Haghighi, M.S.1    Vahedian, A.2    Yazdi, H.S.3
  • 30
    • 79951916431 scopus 로고    scopus 로고
    • Theoretical analysis for solution of support vector data description
    • X. Wang, F.-l. Chung, and S. Wang Theoretical analysis for solution of support vector data description Neural Networks 24 2011 360 369
    • (2011) Neural Networks , vol.24 , pp. 360-369
    • Wang, X.1    Chung, F.-L.2    Wang, S.3
  • 31
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • B. Samanta, and K.R. Al-Balushi Artificial neural network based fault diagnostics of rolling element bearings using time-domain features Mech. Sys. Signal Process. 17 2003 317 328
    • (2003) Mech. Sys. Signal Process. , vol.17 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 32
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • DOI 10.1016/j.ymssp.2006.11.003, PII S0888327006002512
    • Y. Lei, Z. He, Y. Zi, and Q. Hu Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs Mech. Sys. Signal Process. 21 2007 2280 2294 (Pubitemid 46550775)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 33
    • 34548745146 scopus 로고    scopus 로고
    • Validating prognostic algorithms: A case study using comprehensive bearing fault data
    • N. Lybeck, S. Marble, B. Morton, Validating Prognostic Algorithms: A Case Study Using Comprehensive Bearing Fault Data, in: Aerospace Conference, 2007 IEEE, 2007, pp. 1-9.
    • (2007) Aerospace Conference, 2007 IEEE , pp. 1-9
    • Lybeck, N.1    Marble, S.2    Morton, B.3
  • 34
    • 78649934709 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Frank, A. Asuncion, UCI Machine Learning Repository in, University of California, Irvine, School of Information and Computer Sciences, 2010.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.