메뉴 건너뛰기




Volumn 41, Issue 10, 2008, Pages 3021-3034

General support vector representation machine for one-class classification of non-stationary classes

Author keywords

Non stationary classes; Non stationary processes; Novelty detection; One class classification; Online training; Outlier detection; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER NETWORKS; METROPOLITAN AREA NETWORKS; NETWORK PROTOCOLS; SUPPORT VECTOR MACHINES;

EID: 45549087797     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.04.001     Document Type: Article
Times cited : (54)

References (31)
  • 1
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax D.M., and Duin R. Support vector domain description. Pattern Recognition Lett. 20 11-13 (1999) 1191-1199
    • (1999) Pattern Recognition Lett. , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.1    Duin, R.2
  • 2
    • 0030657262 scopus 로고    scopus 로고
    • T. Nairac, C. Corbet, R. Ripley, N. Townsend, L. Tarassenko, Choosing an appropriate model for novelty detection, in: Proceedings of the 5th International Conference on Artificial Neural Networks, UK, 1997, pp. 117-122.
    • T. Nairac, C. Corbet, R. Ripley, N. Townsend, L. Tarassenko, Choosing an appropriate model for novelty detection, in: Proceedings of the 5th International Conference on Artificial Neural Networks, UK, 1997, pp. 117-122.
  • 3
    • 0029237466 scopus 로고    scopus 로고
    • L. Tarassenko, P. Hayton, N. Cerneaz, M. Brady, Novelty detection for the identification of masses in mammograms, in: Proceedings of the 4th International Conference on Artificial Neural Networks, London, UK, 1995, pp. 442-447.
    • L. Tarassenko, P. Hayton, N. Cerneaz, M. Brady, Novelty detection for the identification of masses in mammograms, in: Proceedings of the 4th International Conference on Artificial Neural Networks, London, UK, 1995, pp. 442-447.
  • 4
    • 0029437652 scopus 로고    scopus 로고
    • M. Costa, L. Moura, Automatic assessment of scintmammographic images using a novelty filter, in: Proceedings of the 19th Annual Symposium on Computer Applications in Medical Care, PA, 1995, pp. 537-541.
    • M. Costa, L. Moura, Automatic assessment of scintmammographic images using a novelty filter, in: Proceedings of the 19th Annual Symposium on Computer Applications in Medical Care, PA, 1995, pp. 537-541.
  • 5
    • 85008025302 scopus 로고    scopus 로고
    • Detecting attacks on networks
    • Herringshaw C. Detecting attacks on networks. Computer 30 12 (1997) 16-17
    • (1997) Computer , vol.30 , Issue.12 , pp. 16-17
    • Herringshaw, C.1
  • 6
    • 0037250871 scopus 로고    scopus 로고
    • Experimental validation of structural health monitoring methodology
    • Worden K., and Manson G. Experimental validation of structural health monitoring methodology. J. Sound Vib. 259 2 (2003) 345-363
    • (2003) J. Sound Vib. , vol.259 , Issue.2 , pp. 345-363
    • Worden, K.1    Manson, G.2
  • 8
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Raudys S.J., and Jain A.K. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. Pattern Analysis Mach. Intell. IEEE Trans. 13 3 (1991) 252-264
    • (1991) Pattern Analysis Mach. Intell. IEEE Trans. , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 9
    • 0017017305 scopus 로고
    • On the choice of smoothing parameters for parzen estimators of probability density functions
    • Duin P.W. On the choice of smoothing parameters for parzen estimators of probability density functions. IEEE Trans. Comput. 25 11 (1976) 1175-1179
    • (1976) IEEE Trans. Comput. , vol.25 , Issue.11 , pp. 1175-1179
    • Duin, P.W.1
  • 10
    • 0037248049 scopus 로고    scopus 로고
    • Experimental validation of structural health monitoring methodology I: novelty detection on a laboratory structure
    • Worden K., Manson G., and Allman D.J. Experimental validation of structural health monitoring methodology I: novelty detection on a laboratory structure. J. Sound Vib. 259 2 (2003) 323-343
    • (2003) J. Sound Vib. , vol.259 , Issue.2 , pp. 323-343
    • Worden, K.1    Manson, G.2    Allman, D.J.3
  • 11
    • 3543125360 scopus 로고    scopus 로고
    • Online unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • Yamanishi K., Takeuchi J., Williams G., and Milne P. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining Knowl. Discovery 8 (2004) 275-300
    • (2004) Data Mining Knowl. Discovery , vol.8 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.2    Williams, G.3    Milne, P.4
  • 12
    • 2142828547 scopus 로고    scopus 로고
    • An approach to novelty detection applied to the classification of image regions
    • Singh S., and Markou M. An approach to novelty detection applied to the classification of image regions. IEEE Trans. Knowl. Data Eng. 16 4 (2004) 396-407
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.4 , pp. 396-407
    • Singh, S.1    Markou, M.2
  • 13
    • 45549097234 scopus 로고    scopus 로고
    • D.M. Tax, One class classification, Ph.D. Dissertation, Delft Technical University, 2001.
    • D.M. Tax, One class classification, Ph.D. Dissertation, Delft Technical University, 2001.
  • 14
    • 45549096561 scopus 로고    scopus 로고
    • G.C. Vasconcelos, A bootstrap-like rejection mechanism for multilayer perceptron networks, in: II Simposio Brasileiro de Redes Neurais, São Carlos-SP, Brazil, 1995, pp. 167-172.
    • G.C. Vasconcelos, A bootstrap-like rejection mechanism for multilayer perceptron networks, in: II Simposio Brasileiro de Redes Neurais, São Carlos-SP, Brazil, 1995, pp. 167-172.
  • 15
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review-part 1: neural network based approaches
    • Markou M., and Singh S. Novelty detection: a review-part 1: neural network based approaches. Signal Process. 83 12 (2003) 2499-2521
    • (2003) Signal Process. , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 16
    • 45549096809 scopus 로고    scopus 로고
    • J. Ma, S. Perkins, Online novelty detection on temporal sequences, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, Washington, DC, 2003, pp. 417-423.
    • J. Ma, S. Perkins, Online novelty detection on temporal sequences, in: Proceedings of the International Conference on Knowledge Discovery and Data Mining, Washington, DC, 2003, pp. 417-423.
  • 17
    • 45549084237 scopus 로고    scopus 로고
    • B. Schölkopf, R. Williamson, A. Smola, J.S. Taylor, SV estimation of a distribution's support, in: Proceedings of NIPS'99, 1999.
    • B. Schölkopf, R. Williamson, A. Smola, J.S. Taylor, SV estimation of a distribution's support, in: Proceedings of NIPS'99, 1999.
  • 18
    • 45549085045 scopus 로고    scopus 로고
    • C. Yuan, D. Casanent, Support vector machines for class representation and discrimination, in: International Joint Conference on Neural Networks, Portland, 2003 pp. 1610-1615.
    • C. Yuan, D. Casanent, Support vector machines for class representation and discrimination, in: International Joint Conference on Neural Networks, Portland, 2003 pp. 1610-1615.
  • 19
    • 0242333191 scopus 로고    scopus 로고
    • A kernel-distance-based multivariate control chart using support vector methods
    • Sun R., and Tsung F. A kernel-distance-based multivariate control chart using support vector methods. Int. J. Prod. Res. 41 (2003) 2975-2989
    • (2003) Int. J. Prod. Res. , vol.41 , pp. 2975-2989
    • Sun, R.1    Tsung, F.2
  • 20
    • 33644653840 scopus 로고    scopus 로고
    • Unifying framework for detecting outliers and change points from non-stationary time series data
    • Yamanishi K., and Takeuchi J. Unifying framework for detecting outliers and change points from non-stationary time series data. IEEE Trans. Knowl. Data Eng. 18 4 (2006)
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.4
    • Yamanishi, K.1    Takeuchi, J.2
  • 21
    • 45549102807 scopus 로고    scopus 로고
    • V. Guralnik, J. Srivastava, Event detection from time series data, in: Proceedings of the ACM-SIGKDD International Conference Knowledge Discovery and Data Mining, 1999, pp. 33-42.
    • V. Guralnik, J. Srivastava, Event detection from time series data, in: Proceedings of the ACM-SIGKDD International Conference Knowledge Discovery and Data Mining, 1999, pp. 33-42.
  • 22
    • 26444613281 scopus 로고    scopus 로고
    • M. Sharifzadeh, F. Azmoodeh, C. Shahabi, Change detection in time series data using wavelet footprints, in: Lecture Notes in Computer Science, vol. 3633, 2005, pp. 127-144.
    • M. Sharifzadeh, F. Azmoodeh, C. Shahabi, Change detection in time series data using wavelet footprints, in: Lecture Notes in Computer Science, vol. 3633, 2005, pp. 127-144.
  • 23
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G., and Kubat M. Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23 1 (1996) 69-101
    • (1996) Mach. Learn. , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 24
    • 37449029679 scopus 로고    scopus 로고
    • Online classification of nonstationary data streams
    • Last M. Online classification of nonstationary data streams. Intell. Data Anal. 6 2 (2002) 129-147
    • (2002) Intell. Data Anal. , vol.6 , Issue.2 , pp. 129-147
    • Last, M.1
  • 28
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • Li W., Yue H., Valle-Cervantes S., and Qin J. Recursive PCA for adaptive process monitoring. J. Process Control 10 5 (2000) 471-486
    • (2000) J. Process Control , vol.10 , Issue.5 , pp. 471-486
    • Li, W.1    Yue, H.2    Valle-Cervantes, S.3    Qin, J.4
  • 29
    • 45549093081 scopus 로고    scopus 로고
    • V.B. Gallagher, R.M. Wise, S.W. Butler, D.D. White, G.G. Barna, Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating, in: Proceedings of the International Symposium on Advanced Control of Chemical Processes, Banff, Canada 1997, pp. 149-161.
    • V.B. Gallagher, R.M. Wise, S.W. Butler, D.D. White, G.G. Barna, Development and benchmarking of multivariate statistical process control tools for a semiconductor etch process; improving robustness through model updating, in: Proceedings of the International Symposium on Advanced Control of Chemical Processes, Banff, Canada 1997, pp. 149-161.
  • 31
    • 51749106759 scopus 로고    scopus 로고
    • F. Camci, R.B. Chinnam, R.D. Ellis, Robust kernel distance multivariate control chart using support vector principles, Int. J. Prod. Res. (2008), doi:10.1080/00207540500543265.
    • F. Camci, R.B. Chinnam, R.D. Ellis, Robust kernel distance multivariate control chart using support vector principles, Int. J. Prod. Res. (2008), doi:10.1080/00207540500543265.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.