메뉴 건너뛰기




Volumn 39, Issue 2, 2012, Pages 2166-2171

Kernel k-means clustering based local support vector domain description fault detection of multimodal processes

Author keywords

Fault detection; Kernel k means; Multimodal process; Statistical process control; Support vector domain description

Indexed keywords

CONTROL CHARTS; DETECTION PERFORMANCE; FALSE ALARM RATE; KERNEL K-MEANS; LOCAL SUPPORT; METAL PROCESS; MONITORING STRATEGY; MULTI-MODAL; NONLINEAR PROCESS; NONLINEAR STRUCTURE; PROCESS MODELING AND CONTROL; SIMULATION STUDIES; STATISTICAL PROCESS; SUPPORT VECTOR DOMAIN DESCRIPTION;

EID: 80054941403     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.07.045     Document Type: Conference Paper
Times cited : (68)

References (11)
  • 3
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • D. Hwang, and C. Han Real-time monitoring for a process with multiple operating modes Control Engineering Practice 7 1999 891 902
    • (1999) Control Engineering Practice , vol.7 , pp. 891-902
    • Hwang, D.1    Han, C.2
  • 5
    • 59049084160 scopus 로고    scopus 로고
    • Fabric defect detection based on multiple fractal features and support vector data description
    • H. Bu, J. Wang, and X. Huang Fabric defect detection based on multiple fractal features and support vector data description Engineering Applications of Artificial Intelligence 22 2009 224 235
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , pp. 224-235
    • Bu, H.1    Wang, J.2    Huang, X.3
  • 6
    • 14044252742 scopus 로고    scopus 로고
    • One-class support vector machines - An application in machine fault detection and classification
    • DOI 10.1016/j.cie.2005.01.009, PII S0360835205000100
    • H. Shin, D. Eom, and S. Ki One-class support vector machines: An application in machine fault detection and classification Computers & Industrial Engineering 48 2005 395 408 (Pubitemid 40274932)
    • (2005) Computers and Industrial Engineering , vol.48 , Issue.2 , pp. 395-408
    • Shin, H.J.1    Eom, D.-H.2    Kim, S.-S.3
  • 8
    • 0242333191 scopus 로고    scopus 로고
    • Kernel-distance-based multivariate control charts using support vector methods
    • R. Sun, and F.A. Tsung kernel-distance-based multivariate control charts using support vector methods International Journal of Production Research 41 2003 2975 2989
    • (2003) International Journal of Production Research , vol.41 , pp. 2975-2989
    • Sun, R.1    Tsung, F.A.2
  • 9
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D. Tax, and R. Duin Support vector domain description Pattern Recognition Letters 20 1999 1191 1199 (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 10
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • B.M. Wise, N.B. Gallagher, S.W. Butler, D.D. White, and G.G. Barna A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process Journal of Chemometrics 13 1999 379 396
    • (1999) Journal of Chemometrics , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White, D.D.4    Barna, G.G.5
  • 11
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • G. Zhiqiang, and S. Zhihuan Online monitoring of nonlinear multiple mode processes based on adaptive local model approach Control Engineering Practice 16 2008 1427 1437
    • (2008) Control Engineering Practice , vol.16 , pp. 1427-1437
    • Zhiqiang, G.1    Zhihuan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.