메뉴 건너뛰기




Volumn 37, Issue 12, 2012, Pages 553-562

The high mobility group box: The ultimate utility player of a cell

Author keywords

DNA recognition; High mobility group (HMG) box protein; Post translational modifications

Indexed keywords

CELL RECEPTOR; DNA DIRECTED DNA POLYMERASE ALPHA; HIGH MOBILITY GROUP B1 PROTEIN; HIGH MOBILITY GROUP PROTEIN; MITOCHONDRIAL TRANSCRIPTION FACTOR A; OCTAMER TRANSCRIPTION FACTOR; TESTIS DETERMINING FACTOR; TRANSCRIPTION FACTOR SOX;

EID: 84870033804     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.09.003     Document Type: Review
Times cited : (159)

References (90)
  • 1
    • 0015857760 scopus 로고
    • A new group of chromatin-associated proteins with a high content of acidic and basic amino acids
    • Goodwin G.H., et al. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur. J. Biochem. 1973, 38:14-19.
    • (1973) Eur. J. Biochem. , vol.38 , pp. 14-19
    • Goodwin, G.H.1
  • 2
    • 0035282078 scopus 로고    scopus 로고
    • Revised nomenclature for high mobility group (HMG) chromosomal proteins
    • Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci. 2001, 26:152-153.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 152-153
    • Bustin, M.1
  • 3
    • 74549187994 scopus 로고    scopus 로고
    • Nuclear functions of the HMG proteins
    • Reeves R. Nuclear functions of the HMG proteins. Biochim. Biophys. Acta 2010, 1799:3-14.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 3-14
    • Reeves, R.1
  • 4
    • 74449090463 scopus 로고    scopus 로고
    • HMGA molecular network: from transcriptional regulation to chromatin remodeling
    • Sgarra R., et al. HMGA molecular network: from transcriptional regulation to chromatin remodeling. Biochim. Biophys. Acta 2010, 1799:37-47.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 37-47
    • Sgarra, R.1
  • 5
    • 74449083813 scopus 로고    scopus 로고
    • HMGNs, DNA repair and cancer
    • Gerlitz G. HMGNs, DNA repair and cancer. Biochim. Biophys. Acta 2010, 1799:80-85.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 80-85
    • Gerlitz, G.1
  • 6
    • 0035281548 scopus 로고    scopus 로고
    • HMG1 and 2, and related 'architectural' DNA-binding proteins
    • Thomas J.O., Travers A.A. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem. Sci. 2001, 26:167-174.
    • (2001) Trends Biochem. Sci. , vol.26 , pp. 167-174
    • Thomas, J.O.1    Travers, A.A.2
  • 7
    • 33847792061 scopus 로고    scopus 로고
    • Mitochondrial transcription and its regulation in mammalian cells
    • Asin-Cayuela J., Gustafsson C.M. Mitochondrial transcription and its regulation in mammalian cells. Trends Biochem. Sci. 2007, 32:111-117.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 111-117
    • Asin-Cayuela, J.1    Gustafsson, C.M.2
  • 8
    • 33845744837 scopus 로고    scopus 로고
    • Initiation and beyond: multiple functions of the human mitochondrial transcription machinery
    • Bonawitz N.D., et al. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol. Cell 2006, 24:813-825.
    • (2006) Mol. Cell , vol.24 , pp. 813-825
    • Bonawitz, N.D.1
  • 9
    • 24344498241 scopus 로고    scopus 로고
    • HMG proteins: dynamic players in gene regulation and differentiation
    • Bianchi M.E., Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev. 2005, 15:496-506.
    • (2005) Curr. Opin. Genet. Dev. , vol.15 , pp. 496-506
    • Bianchi, M.E.1    Agresti, A.2
  • 10
    • 74549226503 scopus 로고    scopus 로고
    • HMGB proteins: interactions with DNA and chromatin
    • Stros M. HMGB proteins: interactions with DNA and chromatin. Biochim. Biophys. Acta 2010, 1799:101-113.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 101-113
    • Stros, M.1
  • 11
    • 0034741833 scopus 로고    scopus 로고
    • HMG1 and 2: architectural DNA-binding proteins
    • Thomas J.O. HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans. 2001, 29:395-401.
    • (2001) Biochem. Soc. Trans. , vol.29 , pp. 395-401
    • Thomas, J.O.1
  • 12
    • 0033538467 scopus 로고    scopus 로고
    • HMG-1 as a late mediator of endotoxin lethality in mice
    • Wang H., et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285:248-251.
    • (1999) Science , vol.285 , pp. 248-251
    • Wang, H.1
  • 13
    • 79953066407 scopus 로고    scopus 로고
    • HMGB1 is a therapeutic target for sterile inflammation and infection
    • Andersson U., Tracey K.J. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu. Rev. Immunol. 2011, 29:139-162.
    • (2011) Annu. Rev. Immunol. , vol.29 , pp. 139-162
    • Andersson, U.1    Tracey, K.J.2
  • 14
    • 79951910694 scopus 로고    scopus 로고
    • Autophagy in immunity and cell-autonomous defense against intracellular microbes
    • Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol. Rev. 2011, 240:92-104.
    • (2011) Immunol. Rev. , vol.240 , pp. 92-104
    • Deretic, V.1
  • 15
    • 79952628267 scopus 로고    scopus 로고
    • The Beclin 1 network regulates autophagy and apoptosis
    • Kang R., et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011, 18:571-580.
    • (2011) Cell Death Differ. , vol.18 , pp. 571-580
    • Kang, R.1
  • 16
    • 0032900464 scopus 로고    scopus 로고
    • Diversification pattern of the HMG and SOX family members during evolution
    • Soullier S., et al. Diversification pattern of the HMG and SOX family members during evolution. J. Mol. Evol. 1999, 48:517-527.
    • (1999) J. Mol. Evol. , vol.48 , pp. 517-527
    • Soullier, S.1
  • 17
    • 0027646025 scopus 로고
    • A signature for the HMG-1 box DNA-binding proteins
    • Landsman D., Bustin M. A signature for the HMG-1 box DNA-binding proteins. Bioessays 1993, 15:539-546.
    • (1993) Bioessays , vol.15 , pp. 539-546
    • Landsman, D.1    Bustin, M.2
  • 18
    • 0034655961 scopus 로고    scopus 로고
    • Nonsequence-specific DNA recognition: a structural perspective
    • Murphy F.V., Churchill M.E. Nonsequence-specific DNA recognition: a structural perspective. Structure 2000, 8:R83-R89.
    • (2000) Structure , vol.8
    • Murphy, F.V.1    Churchill, M.E.2
  • 19
    • 77957285584 scopus 로고    scopus 로고
    • Structural analysis of HMGD-DNA complexes reveals influence of intercalation on sequence selectivity and DNA bending
    • Churchill M.E., et al. Structural analysis of HMGD-DNA complexes reveals influence of intercalation on sequence selectivity and DNA bending. J. Mol. Biol. 2010, 403:88-102.
    • (2010) J. Mol. Biol. , vol.403 , pp. 88-102
    • Churchill, M.E.1
  • 20
    • 0036404246 scopus 로고    scopus 로고
    • The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding
    • Masse J.E., et al. The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. J. Mol. Biol. 2002, 323:263-284.
    • (2002) J. Mol. Biol. , vol.323 , pp. 263-284
    • Masse, J.E.1
  • 21
    • 0034717283 scopus 로고    scopus 로고
    • Identification of a second MutL DNA mismatch repair complex (hPMS1 and hMLH1) in human epithelial cells
    • Leung W.K., et al. Identification of a second MutL DNA mismatch repair complex (hPMS1 and hMLH1) in human epithelial cells. J. Biol. Chem. 2000, 275:15728-15732.
    • (2000) J. Biol. Chem. , vol.275 , pp. 15728-15732
    • Leung, W.K.1
  • 22
    • 84867495051 scopus 로고    scopus 로고
    • Binding interaction of HMGB4 with cisplatin-modified DNA
    • Park S., Lippard S.J. Binding interaction of HMGB4 with cisplatin-modified DNA. Biochemistry 2012, 51:6728-6737.
    • (2012) Biochemistry , vol.51 , pp. 6728-6737
    • Park, S.1    Lippard, S.J.2
  • 23
    • 0023684801 scopus 로고
    • Purification and characterization of human mitochondrial transcription factor 1
    • Fisher R.P., Clayton D.A. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 1988, 8:3496-3509.
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 3496-3509
    • Fisher, R.P.1    Clayton, D.A.2
  • 24
    • 0037443884 scopus 로고    scopus 로고
    • Human mitochondrial DNA is packaged with TFAM
    • Alam T.I., et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 2003, 31:1640-1645.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 1640-1645
    • Alam, T.I.1
  • 25
    • 69749099456 scopus 로고    scopus 로고
    • The cost of DNA bending
    • Privalov P.L., et al. The cost of DNA bending. Trends Biochem. Sci. 2009, 34:464-470.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 464-470
    • Privalov, P.L.1
  • 26
    • 0027414641 scopus 로고
    • Structure of the HMG box motif in the B-domain of HMG1
    • Weir H.M., et al. Structure of the HMG box motif in the B-domain of HMG1. EMBO J. 1993, 12:1311-1319.
    • (1993) EMBO J. , vol.12 , pp. 1311-1319
    • Weir, H.M.1
  • 27
    • 0033064093 scopus 로고    scopus 로고
    • Interactions of high mobility group box proteins with DNA and chromatin
    • Churchill M.E., et al. Interactions of high mobility group box proteins with DNA and chromatin. Methods Enzymol. 1999, 304:99-133.
    • (1999) Methods Enzymol. , vol.304 , pp. 99-133
    • Churchill, M.E.1
  • 28
    • 84855882963 scopus 로고    scopus 로고
    • Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA
    • Malarkey C.S., et al. Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA. Nucleic Acids Res. 2012, 40:614-624.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 614-624
    • Malarkey, C.S.1
  • 29
    • 33745242847 scopus 로고    scopus 로고
    • Structure of a complex of tandem HMG boxes and DNA
    • Stott K., et al. Structure of a complex of tandem HMG boxes and DNA. J. Mol. Biol. 2006, 360:90-104.
    • (2006) J. Mol. Biol. , vol.360 , pp. 90-104
    • Stott, K.1
  • 30
    • 80555122761 scopus 로고    scopus 로고
    • Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter
    • Rubio-Cosials A., et al. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat. Struct. Mol. Biol. 2011, 18:1281-1289.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1281-1289
    • Rubio-Cosials, A.1
  • 31
    • 80555128721 scopus 로고    scopus 로고
    • The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA
    • Ngo H.B., et al. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 2011, 18:1290-1296.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1290-1296
    • Ngo, H.B.1
  • 32
    • 0029075461 scopus 로고
    • Molecular basis of human 46X, Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex
    • Werner M.H., et al. Molecular basis of human 46X, Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 1995, 81:705-714.
    • (1995) Cell , vol.81 , pp. 705-714
    • Werner, M.H.1
  • 33
    • 0033485515 scopus 로고    scopus 로고
    • The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition
    • Murphy F.V., et al. The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. EMBO J. 1999, 18:6610-6618.
    • (1999) EMBO J. , vol.18 , pp. 6610-6618
    • Murphy, F.V.1
  • 34
    • 0033578010 scopus 로고    scopus 로고
    • Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins
    • Ohndorf U.M., et al. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 1999, 399:708-712.
    • (1999) Nature , vol.399 , pp. 708-712
    • Ohndorf, U.M.1
  • 35
    • 73349095758 scopus 로고    scopus 로고
    • Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53
    • Wong T.S., et al. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res. 2009, 37:6765-6783.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 6765-6783
    • Wong, T.S.1
  • 36
    • 67249159596 scopus 로고    scopus 로고
    • Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A
    • Gangelhoff T.A., et al. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res. 2009, 37:3153-3164.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 3153-3164
    • Gangelhoff, T.A.1
  • 37
    • 0035964176 scopus 로고    scopus 로고
    • Thermodynamics of HMGB1 interaction with duplex DNA
    • Muller S., et al. Thermodynamics of HMGB1 interaction with duplex DNA. Biochemistry 2001, 40:10254-10261.
    • (2001) Biochemistry , vol.40 , pp. 10254-10261
    • Muller, S.1
  • 38
    • 77950519937 scopus 로고    scopus 로고
    • Origins of specificity in protein-DNA recognition
    • Rohs R., et al. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 2010, 79:233-269.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 233-269
    • Rohs, R.1
  • 39
    • 79958115193 scopus 로고    scopus 로고
    • Quantitative analysis demonstrates most transcription factors require only simple models of specificity
    • Zhao Y., Stormo G.D. Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat. Biotechnol. 2011, 29:480-483.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 480-483
    • Zhao, Y.1    Stormo, G.D.2
  • 40
    • 67649982744 scopus 로고    scopus 로고
    • Diversity and complexity in DNA recognition by transcription factors
    • Badis G., et al. Diversity and complexity in DNA recognition by transcription factors. Science 2009, 324:1720-1723.
    • (2009) Science , vol.324 , pp. 1720-1723
    • Badis, G.1
  • 41
    • 84858302052 scopus 로고    scopus 로고
    • Crystal structure of the Sox4 HMG/DNA complex suggests a mechanism for the positional interdependence in DNA recognition
    • Jauch R., et al. Crystal structure of the Sox4 HMG/DNA complex suggests a mechanism for the positional interdependence in DNA recognition. Biochem. J. 2012, 443:39-47.
    • (2012) Biochem. J. , vol.443 , pp. 39-47
    • Jauch, R.1
  • 42
    • 64649095458 scopus 로고    scopus 로고
    • The structure of Sox17 bound to DNA reveals a conserved bending topology but selective protein interaction platforms
    • Palasingam P., et al. The structure of Sox17 bound to DNA reveals a conserved bending topology but selective protein interaction platforms. J. Mol. Biol. 2009, 388:619-630.
    • (2009) J. Mol. Biol. , vol.388 , pp. 619-630
    • Palasingam, P.1
  • 43
    • 79957592228 scopus 로고    scopus 로고
    • Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA
    • Jauch R., et al. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA. Stem Cells 2011, 29:940-951.
    • (2011) Stem Cells , vol.29 , pp. 940-951
    • Jauch, R.1
  • 44
    • 34548495323 scopus 로고    scopus 로고
    • The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures
    • Kaufman B.A., et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 2007, 18:3225-3236.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3225-3236
    • Kaufman, B.A.1
  • 45
    • 77953319998 scopus 로고    scopus 로고
    • Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro
    • Litonin D., et al. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J. Biol. Chem. 2010, 285:18129-18133.
    • (2010) J. Biol. Chem. , vol.285 , pp. 18129-18133
    • Litonin, D.1
  • 46
    • 0029070402 scopus 로고
    • Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator
    • Dairaghi D.J., et al. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 1995, 249:11-28.
    • (1995) J. Mol. Biol. , vol.249 , pp. 11-28
    • Dairaghi, D.J.1
  • 47
    • 84866082674 scopus 로고    scopus 로고
    • Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A
    • Farge G., et al. Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nat. Commun. 2012, 3:1013.
    • (2012) Nat. Commun. , vol.3 , pp. 1013
    • Farge, G.1
  • 48
    • 76549093805 scopus 로고    scopus 로고
    • SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms
    • Kondoh H., Kamachi Y. SOX-partner code for cell specification: regulatory target selection and underlying molecular mechanisms. Int. J. Biochem. Cell Biol. 2010, 42:391-399.
    • (2010) Int. J. Biochem. Cell Biol. , vol.42 , pp. 391-399
    • Kondoh, H.1    Kamachi, Y.2
  • 49
    • 0030820931 scopus 로고    scopus 로고
    • Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites
    • Ambrosetti D.C., et al. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol. Cell. Biol. 1997, 17:6321-6329.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6321-6329
    • Ambrosetti, D.C.1
  • 50
    • 0028197368 scopus 로고
    • HMG domain proteins: architectural elements in the assembly of nucleoprotein structures
    • Grosschedl R., et al. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994, 10:94-100.
    • (1994) Trends Genet. , vol.10 , pp. 94-100
    • Grosschedl, R.1
  • 51
    • 0042161878 scopus 로고    scopus 로고
    • Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers
    • Remenyi A., et al. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev. 2003, 17:2048-2059.
    • (2003) Genes Dev. , vol.17 , pp. 2048-2059
    • Remenyi, A.1
  • 52
    • 0346462991 scopus 로고    scopus 로고
    • Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex
    • Williams D.C., et al. Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J. Biol. Chem. 2004, 279:1449-1457.
    • (2004) J. Biol. Chem. , vol.279 , pp. 1449-1457
    • Williams, D.C.1
  • 53
    • 46349086564 scopus 로고    scopus 로고
    • Mechanism of high-mobility group protein B enhancement of progesterone receptor sequence-specific DNA binding
    • Roemer S.C., et al. Mechanism of high-mobility group protein B enhancement of progesterone receptor sequence-specific DNA binding. Nucleic Acids Res. 2008, 36:3655-3666.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 3655-3666
    • Roemer, S.C.1
  • 54
    • 74549177555 scopus 로고    scopus 로고
    • Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae
    • Stillman D.J. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. Biochim. Biophys. Acta 2010, 1799:175-180.
    • (2010) Biochim. Biophys. Acta , vol.1799 , pp. 175-180
    • Stillman, D.J.1
  • 55
    • 1542328273 scopus 로고    scopus 로고
    • Nucleosome remodeling: one mechanism, many phenomena?
    • Langst G., Becker P.B. Nucleosome remodeling: one mechanism, many phenomena?. Biochim. Biophys. Acta 2004, 1677:58-63.
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 58-63
    • Langst, G.1    Becker, P.B.2
  • 56
    • 79952539053 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling: genetics, genomics and mechanisms
    • Hargreaves D.C., Crabtree G.R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011, 21:396-420.
    • (2011) Cell Res. , vol.21 , pp. 396-420
    • Hargreaves, D.C.1    Crabtree, G.R.2
  • 57
    • 59049087724 scopus 로고    scopus 로고
    • Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling
    • Lai D., et al. Induction of TLR4-target genes entails calcium/calmodulin-dependent regulation of chromatin remodeling. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:1169-1174.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 1169-1174
    • Lai, D.1
  • 58
    • 68349131435 scopus 로고    scopus 로고
    • YFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement
    • Xin H., et al. yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol. Cell 2009, 35:365-376.
    • (2009) Mol. Cell , vol.35 , pp. 365-376
    • Xin, H.1
  • 59
    • 79955844395 scopus 로고    scopus 로고
    • The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization
    • Winkler D.D., Luger K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J. Biol. Chem. 2011, 286:18369-18374.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18369-18374
    • Winkler, D.D.1    Luger, K.2
  • 60
    • 69949134806 scopus 로고    scopus 로고
    • Phosphorylated intrinsically disordered region of FACT masks its nucleosomal DNA binding elements
    • Tsunaka Y., et al. Phosphorylated intrinsically disordered region of FACT masks its nucleosomal DNA binding elements. J. Biol. Chem. 2009, 284:24610-24621.
    • (2009) J. Biol. Chem. , vol.284 , pp. 24610-24621
    • Tsunaka, Y.1
  • 61
    • 0035807789 scopus 로고    scopus 로고
    • In vivo acetylation of HMG1 protein enhances its binding affinity to distorted DNA structures
    • Ugrinova I., et al. In vivo acetylation of HMG1 protein enhances its binding affinity to distorted DNA structures. Biochemistry 2001, 40:14655-14660.
    • (2001) Biochemistry , vol.40 , pp. 14655-14660
    • Ugrinova, I.1
  • 62
    • 79960988636 scopus 로고    scopus 로고
    • The DNA binding and bending activities of truncated tail-less HMGB1 protein are differentially affected by Lys-2 and Lys-81 residues and their acetylation
    • Elenkov I., et al. The DNA binding and bending activities of truncated tail-less HMGB1 protein are differentially affected by Lys-2 and Lys-81 residues and their acetylation. Int. J. Biol. Sci. 2011, 7:691-699.
    • (2011) Int. J. Biol. Sci. , vol.7 , pp. 691-699
    • Elenkov, I.1
  • 63
    • 79955438619 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 5 phosphorylates mammalian HMGB1 protein only if acetylated
    • Ugrinova I., et al. Cyclin-dependent kinase 5 phosphorylates mammalian HMGB1 protein only if acetylated. J. Biochem. 2011, 149:563-568.
    • (2011) J. Biochem. , vol.149 , pp. 563-568
    • Ugrinova, I.1
  • 64
    • 34447523457 scopus 로고    scopus 로고
    • Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils
    • Ito I., et al. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J. Biol. Chem. 2007, 282:16336-16344.
    • (2007) J. Biol. Chem. , vol.282 , pp. 16336-16344
    • Ito, I.1
  • 65
    • 0142137129 scopus 로고    scopus 로고
    • Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion
    • Bonaldi T., et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003, 22:5551-5560.
    • (2003) EMBO J. , vol.22 , pp. 5551-5560
    • Bonaldi, T.1
  • 66
    • 70349871255 scopus 로고    scopus 로고
    • Acetylation of sox2 induces its nuclear export in embryonic stem cells
    • Baltus G.A., et al. Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 2009, 27:2175-2184.
    • (2009) Stem Cells , vol.27 , pp. 2175-2184
    • Baltus, G.A.1
  • 67
    • 33749125188 scopus 로고    scopus 로고
    • Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1
    • Hoppe G., et al. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp. Cell Res. 2006, 312:3526-3538.
    • (2006) Exp. Cell Res. , vol.312 , pp. 3526-3538
    • Hoppe, G.1
  • 68
    • 56649091195 scopus 로고    scopus 로고
    • Redox properties of the A-domain of the HMGB1 protein
    • Sahu D., et al. Redox properties of the A-domain of the HMGB1 protein. FEBS Lett. 2008, 582:3973-3978.
    • (2008) FEBS Lett. , vol.582 , pp. 3973-3978
    • Sahu, D.1
  • 69
    • 79953214909 scopus 로고    scopus 로고
    • Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA
    • Park S., Lippard S.J. Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA. Biochemistry 2011, 50:2567-2574.
    • (2011) Biochemistry , vol.50 , pp. 2567-2574
    • Park, S.1    Lippard, S.J.2
  • 70
    • 0030610119 scopus 로고    scopus 로고
    • Oxidation of a critical methionine modulates DNA binding of the Drosophila melanogaster high mobility group protein, HMG-D
    • Dow L.K., et al. Oxidation of a critical methionine modulates DNA binding of the Drosophila melanogaster high mobility group protein, HMG-D. FEBS Lett. 1997, 414:514-520.
    • (1997) FEBS Lett. , vol.414 , pp. 514-520
    • Dow, L.K.1
  • 71
    • 79952366675 scopus 로고    scopus 로고
    • High-mobility group box 1, oxidative stress, and disease
    • Tang D., et al. High-mobility group box 1, oxidative stress, and disease. Antioxid. Redox Signal. 2011, 14:1315-1335.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1315-1335
    • Tang, D.1
  • 72
    • 78650067155 scopus 로고    scopus 로고
    • High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity
    • Evankovich J., et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J. Biol. Chem. 2010, 285:39888-39897.
    • (2010) J. Biol. Chem. , vol.285 , pp. 39888-39897
    • Evankovich, J.1
  • 73
    • 33847775295 scopus 로고    scopus 로고
    • Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1
    • Tang D., et al. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J. Leukoc. Biol. 2007, 81:741-747.
    • (2007) J. Leukoc. Biol. , vol.81 , pp. 741-747
    • Tang, D.1
  • 74
    • 4444261780 scopus 로고    scopus 로고
    • HMGB1 is an endogenous immune adjuvant released by necrotic cells
    • Rovere-Querini P., et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 2004, 5:825-830.
    • (2004) EMBO Rep. , vol.5 , pp. 825-830
    • Rovere-Querini, P.1
  • 75
    • 0037062934 scopus 로고    scopus 로고
    • Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
    • Scaffidi P., et al. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191-195.
    • (2002) Nature , vol.418 , pp. 191-195
    • Scaffidi, P.1
  • 76
    • 77957106729 scopus 로고    scopus 로고
    • HMGB1 release and redox regulates autophagy and apoptosis in cancer cells
    • Tang D., et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010, 29:5299-5310.
    • (2010) Oncogene , vol.29 , pp. 5299-5310
    • Tang, D.1
  • 77
    • 1542380035 scopus 로고    scopus 로고
    • Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein
    • Park J.S., et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 2004, 279:7370-7377.
    • (2004) J. Biol. Chem. , vol.279 , pp. 7370-7377
    • Park, J.S.1
  • 78
    • 77955403878 scopus 로고    scopus 로고
    • A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release
    • Yang H., et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11942-11947.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11942-11947
    • Yang, H.1
  • 79
    • 84862841848 scopus 로고    scopus 로고
    • Mitochondrial transcription factor a serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA
    • Julian M.W., et al. Mitochondrial transcription factor a serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA. J. Immunol. 2012, 189:433-443.
    • (2012) J. Immunol. , vol.189 , pp. 433-443
    • Julian, M.W.1
  • 80
    • 0025243412 scopus 로고
    • Expression of a candidate sex-determining gene during mouse testis differentiation
    • Koopman P., et al. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 1990, 348:450-452.
    • (1990) Nature , vol.348 , pp. 450-452
    • Koopman, P.1
  • 81
    • 34748830336 scopus 로고    scopus 로고
    • Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors
    • Lefebvre V., et al. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell Biol. 2007, 39:2195-2214.
    • (2007) Int. J. Biochem. Cell Biol. , vol.39 , pp. 2195-2214
    • Lefebvre, V.1
  • 82
    • 13244264948 scopus 로고    scopus 로고
    • RNA-polymerase-I-directed rDNA transcription, life and works
    • Russell J., Zomerdijk J.C. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem. Sci. 2005, 30:87-96.
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 87-96
    • Russell, J.1    Zomerdijk, J.C.2
  • 83
    • 33845355511 scopus 로고    scopus 로고
    • Diversity of LEF/TCF action in development and disease
    • Arce L., et al. Diversity of LEF/TCF action in development and disease. Oncogene 2006, 25:7492-7504.
    • (2006) Oncogene , vol.25 , pp. 7492-7504
    • Arce, L.1
  • 84
    • 47249149614 scopus 로고    scopus 로고
    • Boys, girls and shuttling of SRY and SOX9
    • Sim H., et al. Boys, girls and shuttling of SRY and SOX9. Trends Endocrinol. Metab. 2008, 19:213-222.
    • (2008) Trends Endocrinol. Metab. , vol.19 , pp. 213-222
    • Sim, H.1
  • 85
    • 0028808183 scopus 로고
    • Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3
    • Yuan H., et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995, 9:2635-2645.
    • (1995) Genes Dev. , vol.9 , pp. 2635-2645
    • Yuan, H.1
  • 86
    • 36048993973 scopus 로고    scopus 로고
    • Sox17 and Sox4 differentially regulate β-catenin/T-cell factor activity and proliferation of colon carcinoma cells
    • Sinner D., et al. Sox17 and Sox4 differentially regulate β-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol. Cell. Biol. 2007, 27:7802-7815.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7802-7815
    • Sinner, D.1
  • 87
    • 3543143101 scopus 로고    scopus 로고
    • Functional proteomics mapping of a human signaling pathway
    • Colland F., et al. Functional proteomics mapping of a human signaling pathway. Genome Res. 2004, 14:1324-1332.
    • (2004) Genome Res. , vol.14 , pp. 1324-1332
    • Colland, F.1
  • 88
    • 84857926456 scopus 로고    scopus 로고
    • E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300
    • Hyndman B.D., et al. E2A proteins enhance the histone acetyltransferase activity of the transcriptional co-activators CBP and p300. Biochim. Biophys. Acta 2012, 1819:446-453.
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 446-453
    • Hyndman, B.D.1
  • 89
    • 84857047339 scopus 로고    scopus 로고
    • PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
    • Hornbeck P.V., et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012, 40:D261-D270.
    • (2012) Nucleic Acids Res. , vol.40
    • Hornbeck, P.V.1
  • 90
    • 0031574026 scopus 로고    scopus 로고
    • NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions
    • Luscombe N.M., et al. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res. 1997, 25:4940-4945.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 4940-4945
    • Luscombe, N.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.