메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 2935-2972

Tree decomposition for large-scale SVM problems

Author keywords

Binary tree; Generalization error ibound; Margin based theory; Pattern classification; Support vector machine; Tree decomposition; VC theory

Indexed keywords

GENERALIZATION ERROR; MARGIN-BASED THEORY; PATTERN CLASSIFICATION; TREE DECOMPOSITION; VC THEORY;

EID: 78649414696     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (82)

References (54)
  • 1
    • 0031176507 scopus 로고    scopus 로고
    • Scale-sensitive dimensions, uniform convergence, and learnability
    • N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform convergence, and learnability. Journal of ACM, 44(4):615-631, 1997.
    • (1997) Journal of ACM , vol.44 , Issue.4 , pp. 615-631
    • Alon, N.1    Ben-David, S.2    Cesa-Bianchi, N.3    Haussler, D.4
  • 2
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press
    • P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods-Support Vector Learning. MIT Press, 1998.
    • (1998) Advances in Kernel Methods-support Vector Learning
    • Bartlett, P.1    Shawe-Taylor, J.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 262:123-140, 1996.
    • (1996) Machine Learning , vol.262 , pp. 123-140
    • Breiman, L.1
  • 11
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Journal of Data Mining and Knowledge Discovery, 2(2):1-47, 1998.
    • (1998) Journal of Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 1-47
    • Burges, C.J.C.1
  • 12
    • 0036583160 scopus 로고    scopus 로고
    • A parallel mixture of SVMs for very large scale problems
    • R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale problems. Neural Computation, 14(5):1105-1114, 2002.
    • (2002) Neural. Computation , vol.14 , Issue.5 , pp. 1105-1114
    • Collobert, R.1    Bengio, S.2    Bengio, Y.3
  • 13
  • 15
    • 0042120126 scopus 로고
    • Decision trees in pattern recognition
    • L. N. Kanal and A. Rossenfeld, editors, Elsevier
    • G. R. Dattatreya and L. N. Kanal. Decision trees in pattern recognition. In L. N. Kanal and A. Rossenfeld, editors, Progress in Pattern Recognition, volume 2. Elsevier, 1985.
    • (1985) Progress in Pattern Recognition , vol.2
    • Dattatreya, G.R.1    Kanal, L.N.2
  • 16
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:139-157, 2000.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 17
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training SVM
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research, 6:1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 22
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press
    • T. Joachims. Making large-scale support vector machine learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Kernel Methods-Support Vector Learning. MIT Press, 1998.
    • (1998) Kernel Methods-support Vector Learning
    • Joachims, T.1
  • 25
    • 0003250435 scopus 로고
    • Single-layer learning revisited: A stepwise procedure for building and training a neural network
    • J. Fogelman, editor, Springer-Verlag
    • S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited: A stepwise procedure for building and training a neural network. In J. Fogelman, editor, Neurocomputing: Algorithms, Architectures and Applications. Springer-Verlag, 1990.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 26
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse gaussian process methods: The informative vector machine
    • S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press
    • N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian process methods: the informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors, Neural Information Processing Systems. MIT Press, 2003.
    • (2003) Neural. Information Processing Systems
    • Lawrence, N.D.1    Seeger, M.2    Herbrich, R.3
  • 30
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines
    • E. Osuna, R. Freud, and F. Girosi. An improved training algorithm for support vector machines. In Neural Networks for Signal Processing, volume VII, pages 276-285, 1997.
    • (1997) Neural. Networks for Signal Processing , vol.7 , pp. 276-285
    • Osuna, E.1    Freud, R.2    Girosi, F.3
  • 32
    • 0034593060 scopus 로고    scopus 로고
    • Towards scalable support vector machines using squashing
    • D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines using squashing. In ACM SIGKDD, pages 295-299, 2000.
    • (2000) ACM SIGKDD , pp. 295-299
    • Pavlov, D.1    Chudova, D.2    Smyth, P.3
  • 33
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. J. Smola, editors, MIT Press
    • J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Kernel Methods: Support Vector Learning. MIT Press, 1998.
    • (1998) Kernel Methods: Support Vector Learning
    • Platt, J.C.1
  • 35
    • 33744584654 scopus 로고
    • Induction of decision tree
    • J. R. Quinlan. Induction of decision tree. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 38
    • 33750079864 scopus 로고    scopus 로고
    • A hierarchy of support vector machines for pattern detection
    • H. Sahbi and D. Geman. A hierarchy of support vector machines for pattern detection. Journal of Machine Learning Research, 7:2087-2123, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2087-2123
    • Sahbi, H.1    Geman, D.2
  • 39
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 40
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Journal of Machine Learning Research, 39(2/3):135-168, 2000.
    • (2000) Journal of Machine Learning Research , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 45
    • 85162015906 scopus 로고    scopus 로고
    • Bundle methods for machine learning
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
    • A. J. Smola, S. V. N. Vishwanathan, and Q. V. Le. Bundle methods for machine learning. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20. MIT Press, 2007.
    • (2007) Advances in Neural. Information Processing Systems , vol.20
    • Smola, A.J.1    Vishwanathan, S.V.N.2    Le, Q.V.3
  • 48
    • 0034320395 scopus 로고    scopus 로고
    • A bayesian committee machines
    • V. Tresp. A bayesian committee machines. Neural Computation, 12:2719-2741, 2000.
    • (2000) Neural. Computation , vol.12 , pp. 2719-2741
    • Tresp, V.1
  • 49
    • 23044525572 scopus 로고    scopus 로고
    • Scaling Kernel-based systems to large data sets
    • V. Tresp. Scaling kernel-based systems to large data sets. Data Mining and Knowledge Discovery, 5:197-211, 2001. (Pubitemid 33750366)
    • (2001) Data Mining and Knowledge Discovery , vol.5 , Issue.3 , pp. 197-211
    • Tresp, V.1
  • 51
    • 78649430585 scopus 로고    scopus 로고
    • Protein-protein interface prediction based on a novel SVM speedup
    • Institute of Information Science, Academia Sinica
    • T.-S. Tseng, C.-Y. Guo, Wen-Lian Hsu, and F. Chang. Protein-protein interface prediction based on a novel SVM speedup. Technical Report, Number TR-IIS-10-001, Institute of Information Science, Academia Sinica, 2010.
    • (2010) Technical Report, Number TR-IIS-10-001
    • Tseng, T.-S.1    Guo, C.-Y.2    Hsu, W.3    Chang, F.4
  • 54
    • 27944509126 scopus 로고    scopus 로고
    • Making SVMs scalable to large data sets using hierarchical cluster indexing
    • H. Yu, J. Han J. Yang, and X. Li. Making SVMs scalable to large data sets using hierarchical cluster indexing. Data Mining and Knowledge Discovery, 11:295-321, 2003.
    • (2003) Data Mining and Knowledge Discovery , vol.11 , pp. 295-321
    • Yu, H.1    Han, J.2    Yang, J.3    Li, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.