-
1
-
-
0022026217
-
Random sampling with a reservoir
-
J. S. Viter, Random sampling with a reservoir, ACM Trans Math Software 11 (1985), 37-57.
-
(1985)
ACM Trans Math Software
, vol.11
, pp. 37-57
-
-
Viter, J.S.1
-
2
-
-
11144273669
-
The perceptron: a probabilistic model for information storage and organization in the brain
-
F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol Rev 65 (1958), 386-408.
-
(1958)
Psychol Rev
, vol.65
, pp. 386-408
-
-
Rosenblatt, F.1
-
4
-
-
35348858944
-
Tracking the best hyperplane with a simple budget perceptron
-
N. Cesa-Bianchi and C. Gentile, Tracking the best hyperplane with a simple budget perceptron, Mach Learn 69 (2007), 143-167.
-
(2007)
Mach Learn
, vol.69
, pp. 143-167
-
-
Cesa-Bianchi, N.1
Gentile, C.2
-
5
-
-
84899003168
-
Online classification on a budget
-
Cambridge, MA, MIT Press
-
K. Crammer, J. Kandola, and Y. Singer, Online classification on a budget, In Advances in Neural Information Processing Systems, Vol. 16, Cambridge, MA, MIT Press, 2004, 225-232.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 225-232
-
-
Crammer, K.1
Kandola, J.2
Singer, Y.3
-
6
-
-
55249109544
-
The forgetron: a kernel-based perceptron on a budget
-
O. Dekel, S. S. Shwartz, and Y. Singer, The forgetron: a kernel-based perceptron on a budget, SIAM J Comput 37 (2008), 1342-1372.
-
(2008)
SIAM J Comput
, vol.37
, pp. 1342-1372
-
-
Dekel, O.1
Shwartz, S.S.2
Singer, Y.3
-
7
-
-
67650661633
-
Compressed kernel perceptrons
-
S. Vucetic, V. Coric, and Z. Wang, Compressed kernel perceptrons, In Proceedings of Data Compression Conference, 2009, 153-162.
-
(2009)
Proceedings of Data Compression Conference
, pp. 153-162
-
-
Vucetic, S.1
Coric, V.2
Wang, Z.3
-
8
-
-
70449339237
-
Tighter perceptron with improved dual use of cached data for model representation and validation
-
Z. Wang and S. Vucetic, Tighter perceptron with improved dual use of cached data for model representation and validation, In Proceedings of International Joint Conference on Neural Networks, 2009, 2766-2771.
-
(2009)
Proceedings of International Joint Conference on Neural Networks
, pp. 2766-2771
-
-
Wang, Z.1
Vucetic, S.2
-
10
-
-
40849106339
-
Provably fast training algorithms for support vector machines
-
J. L. Balcázar, Y. Dai, J. Tanaka, and O. Watanabe, Provably fast training algorithms for support vector machines, Theor Comput Syst 42 (2008), 568-595.
-
(2008)
Theor Comput Syst
, vol.42
, pp. 568-595
-
-
Balcázar, J.L.1
Dai, Y.2
Tanaka, J.3
Watanabe, O.4
-
11
-
-
34250704272
-
Trading convexity for scalability
-
R. Collobert, F. Sinz, J. Weston, and L. Bottou, Trading convexity for scalability, In Proceedings of International Conference on Machine Learning, 2006, 201-208.
-
(2006)
Proceedings of International Conference on Machine Learning
, pp. 201-208
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
13
-
-
0034593060
-
Towards scalable support vector machines using squashing
-
D. Pavlov, D. Chudova, and P. Smyth, Towards scalable support vector machines using squashing, In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2000, 295-299.
-
(2000)
Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining
, pp. 295-299
-
-
Pavlov, D.1
Chudova, D.2
Smyth, P.3
-
14
-
-
21844440579
-
Core vector machines: fast SVM training on very large data sets
-
I. W. Tsang, J. T. Kwok, and P.-M. Cheung, Core vector machines: fast SVM training on very large data sets, J Mach Learn Res 8 (2005), 291-301.
-
(2005)
J Mach Learn Res
, vol.8
, pp. 291-301
-
-
Tsang, I.W.1
Kwok, J.T.2
Cheung, P.-M.3
-
16
-
-
27944509126
-
Making SVMs scalable to large data sets using hierarchical cluster indexing
-
H. Yu, J. Yang, J. Han, and X.-L. Li, Making SVMs scalable to large data sets using hierarchical cluster indexing, Data Mining Knowl Discov 11 (2005), 295-321.
-
(2005)
Data Mining Knowl Discov
, vol.11
, pp. 295-321
-
-
Yu, H.1
Yang, J.2
Han, J.3
Li, X.-L.4
-
17
-
-
4644354708
-
Sparseness of support vector machines
-
I. Steinwart, Sparseness of support vector machines, J Mach Learn Res 4 (2003), 1071-1105.
-
(2003)
J Mach Learn Res
, vol.4
, pp. 1071-1105
-
-
Steinwart, I.1
-
18
-
-
77951160349
-
The concave convex procedure (CCCP)
-
Cambridge, MA, MIT Press
-
A. L. Yuille and A. Rangarajan, The concave convex procedure (CCCP), In Advances in Neural Information Processing Systems, Vol. 14, Cambridge, MA, MIT Press, 2002, 409-415.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 409-415
-
-
Yuille, A.L.1
Rangarajan, A.2
-
19
-
-
80052866161
-
Incremental and decremental support vector machine learning
-
Cambridge, MA, MIT Press
-
G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning, In Advances in Neural Information Processing Systems, Vol. 13, Cambridge, MA, MIT Press, 2001, 409-415.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 409-415
-
-
Cauwenberghs, G.1
Poggio, T.2
-
22
-
-
84925605946
-
The entire regularization path for the support vector machine
-
T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, The entire regularization path for the support vector machine, J Mach Learn Res 5 (2004), 1391-1415.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
25
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller, Support vector machine active learning with applications to text classification, J Mach Learn Res 2 (2001), 45-66.
-
(2001)
J Mach Learn Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
26
-
-
33745777639
-
Incremental support vector learning: analysis, implementation and applications
-
P. Laskov, H. Gehl, S. Krüger, and K.-R. Müller, Incremental support vector learning: analysis, implementation and applications, J Mach Learn Res 7 (2006), 1909-1936.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, H.2
Krüger, S.3
Müller, K.-R.4
-
28
-
-
25444522689
-
Fast kernel classifiers for online and active learning
-
A. Bordes, S. Ertekin, J. Wesdon, and L. Bottou, Fast kernel classifiers for online and active learning, J Mach Learn Res 6 (2005), 1579-1619.
-
(2005)
J Mach Learn Res
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Wesdon, J.3
Bottou, L.4
-
29
-
-
57849102080
-
Training invariant support vector machines using selective sampling
-
Cambridge, MA, MIT Press
-
G. Loosli, S. Canu, and L. Bottou, Training invariant support vector machines using selective sampling, In Large Scale Kernel Machines, Cambridge, MA, MIT Press, 2007, 301-320.
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Loosli, G.1
Canu, S.2
Bottou, L.3
-
30
-
-
84868111801
-
A new approximate maximal margin classification algorithm
-
C. Gentile, A new approximate maximal margin classification algorithm, J Mach Learn Res 2 (2001), 213-242.
-
(2001)
J Mach Learn Res
, vol.2
, pp. 213-242
-
-
Gentile, C.1
-
31
-
-
0036161258
-
The relaxed online maximum margin algorithm
-
Y. Li and P. Long, The relaxed online maximum margin algorithm, Mach Learn 46 (2002), 361-387.
-
(2002)
Mach Learn
, vol.46
, pp. 361-387
-
-
Li, Y.1
Long, P.2
-
32
-
-
3543110224
-
Online learning with kernels
-
J. Kivinen, A. J. Smola, and R. C. Williamson, Online learning with kernels, IEEE Trans Signal Process 52 (2002), 2165-2176.
-
(2002)
IEEE Trans Signal Process
, vol.52
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
33
-
-
33646371466
-
Online passive-agressive algorithms
-
K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer, Online passive-agressive algorithms, J Mach Learn Res 7 (2006), 551-585.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 551-585
-
-
Crammer, K.1
Dekel, O.2
Keshet, J.3
Shalev-Shwartz, S.4
Singer, Y.5
-
34
-
-
34547964973
-
Pegasos: primal estimated sub-gradient solver for svm
-
S. Shalev-Shwartz, Y. Singer, and N. Srebro, Pegasos: primal estimated sub-gradient solver for svm, Proceedings of International Conference on Machine Learning, 2007, 807-814.
-
(2007)
Proceedings of International Conference on Machine Learning
, pp. 807-814
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
37
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
B. Schökopf, S. Mika, C. J. C. Burges, P. Knirsch, K. Müler, G. Räsch, and A. J. Smola, Input space versus feature space in kernel-based methods, IEEE Trans Neural Networks 10 (1999), 1000-1017.
-
(1999)
IEEE Trans Neural Networks
, vol.10
, pp. 1000-1017
-
-
Schökopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müler, K.5
Räsch, G.6
Smola, A.J.7
-
38
-
-
84869396719
-
Support vector machines on a budget
-
Cambridge, MA, MIT Press
-
O. Dekel and Y. Singer, Support vector machines on a budget, In Advances in Neural Information Processing Systems, Vol. 19, Cambridge, MA, MIT Press, 2006, 345-352.
-
(2006)
Advances in Neural Information Processing Systems
, vol.19
, pp. 345-352
-
-
Dekel, O.1
Singer, Y.2
-
39
-
-
38149125878
-
Building sparse large margin classifiers
-
M.-R. Wu, B. Schökopf, and G. Barik, Building sparse large margin classifiers, In Proceedings of International Conference on Machine Learning, 2005, 996-1003.
-
(2005)
Proceedings of International Conference on Machine Learning
, pp. 996-1003
-
-
Wu, M.-R.1
Schökopf, B.2
Barik, G.3
-
40
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
S. S. Keerthi, O. Chapelle, and D. DeCoste, Building support vector machines with reduced classifier complexity, J Mach Learn Res 7 (2006), 1493-1515.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
DeCoste, D.3
-
41
-
-
34547977713
-
Support cluster machine
-
B. Li, M. Chi, J. Fan, and X. Xue, Support cluster machine, In Proceedings of International Conference on Machine Learning, 2007, 505-512.
-
(2007)
Proceedings of International Conference on Machine Learning
, pp. 505-512
-
-
Li, B.1
Chi, M.2
Fan, J.3
Xue, X.4
-
42
-
-
33847676236
-
Neighborhood property based pattern selection for support vector machines
-
H. Shin and S. Cho, Neighborhood property based pattern selection for support vector machines, Neural Comput 19 (2007), 816-855.
-
(2007)
Neural Comput
, vol.19
, pp. 816-855
-
-
Shin, H.1
Cho, S.2
-
43
-
-
84862600000
-
Online (and offline) on an even tighter budget
-
J. Weston, A. Bordes, and L. Bottou, Online (and offline) on an even tighter budget, In Proceedings of International Workshop on Artificial Intelligence and Statistics, 2005, 413-420.
-
(2005)
Proceedings of International Workshop on Artificial Intelligence and Statistics
, pp. 413-420
-
-
Weston, J.1
Bordes, A.2
Bottou, L.3
-
44
-
-
84945284029
-
Sparse online greedy support vector regression
-
Y. Engel, S. Mannor, and R. Meir, Sparse online greedy support vector regression, In Proceedings of European Conference on Machine Learning, 2002, 84-96.
-
(2002)
Proceedings of European Conference on Machine Learning
, pp. 84-96
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
45
-
-
56449097022
-
The projectron: a bounded kernel-based perceptron
-
F. Orabona, J. Keshet, and B. Caputo, The projectron: a bounded kernel-based perceptron, In Proceedings of International Conference on Machine Learning, 2008, 720-727.
-
(2008)
Proceedings of International Conference on Machine Learning
, pp. 720-727
-
-
Orabona, F.1
Keshet, J.2
Caputo, B.3
-
46
-
-
33749472827
-
Kernel classifier with adaptive structure and fixed memory for process diagnosis
-
H.-Q. Wang, P. Li, F.-R. Gao, Z.-H. Song, and S. X. Ding, Kernel classifier with adaptive structure and fixed memory for process diagnosis, AIChE Journal 52 (2006), 3515-3531.
-
(2006)
AIChE Journal
, vol.52
, pp. 3515-3531
-
-
Wang, H.-Q.1
Li, P.2
Gao, F.-R.3
Song, Z.-H.4
Ding, S.X.5
-
47
-
-
40649103591
-
Kernel-based online machine learning and support vector reduction
-
S. Agarwal, V. V. Saradhi, and H. Karnick, Kernel-based online machine learning and support vector reduction, Neurocomputing 71 (2008), 1230-1237.
-
(2008)
Neurocomputing
, vol.71
, pp. 1230-1237
-
-
Agarwal, S.1
Saradhi, V.V.2
Karnick, H.3
|