메뉴 건너뛰기




Volumn 3, Issue 3, 2010, Pages 149-169

Online training on a budget of support vector machines using twin prototypes

Author keywords

Budgeted learning; CCCP; Online learning; Ramp loss; Support vector machines

Indexed keywords

BUDGET CONTROL; E-LEARNING; VECTOR SPACES; VECTORS;

EID: 77954636582     PISSN: 19321872     EISSN: 19321864     Source Type: Journal    
DOI: 10.1002/sam.10075     Document Type: Article
Times cited : (33)

References (47)
  • 1
    • 0022026217 scopus 로고
    • Random sampling with a reservoir
    • J. S. Viter, Random sampling with a reservoir, ACM Trans Math Software 11 (1985), 37-57.
    • (1985) ACM Trans Math Software , vol.11 , pp. 37-57
    • Viter, J.S.1
  • 2
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain, Psychol Rev 65 (1958), 386-408.
    • (1958) Psychol Rev , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 4
    • 35348858944 scopus 로고    scopus 로고
    • Tracking the best hyperplane with a simple budget perceptron
    • N. Cesa-Bianchi and C. Gentile, Tracking the best hyperplane with a simple budget perceptron, Mach Learn 69 (2007), 143-167.
    • (2007) Mach Learn , vol.69 , pp. 143-167
    • Cesa-Bianchi, N.1    Gentile, C.2
  • 6
    • 55249109544 scopus 로고    scopus 로고
    • The forgetron: a kernel-based perceptron on a budget
    • O. Dekel, S. S. Shwartz, and Y. Singer, The forgetron: a kernel-based perceptron on a budget, SIAM J Comput 37 (2008), 1342-1372.
    • (2008) SIAM J Comput , vol.37 , pp. 1342-1372
    • Dekel, O.1    Shwartz, S.S.2    Singer, Y.3
  • 8
    • 70449339237 scopus 로고    scopus 로고
    • Tighter perceptron with improved dual use of cached data for model representation and validation
    • Z. Wang and S. Vucetic, Tighter perceptron with improved dual use of cached data for model representation and validation, In Proceedings of International Joint Conference on Neural Networks, 2009, 2766-2771.
    • (2009) Proceedings of International Joint Conference on Neural Networks , pp. 2766-2771
    • Wang, Z.1    Vucetic, S.2
  • 10
    • 40849106339 scopus 로고    scopus 로고
    • Provably fast training algorithms for support vector machines
    • J. L. Balcázar, Y. Dai, J. Tanaka, and O. Watanabe, Provably fast training algorithms for support vector machines, Theor Comput Syst 42 (2008), 568-595.
    • (2008) Theor Comput Syst , vol.42 , pp. 568-595
    • Balcázar, J.L.1    Dai, Y.2    Tanaka, J.3    Watanabe, O.4
  • 14
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: fast SVM training on very large data sets
    • I. W. Tsang, J. T. Kwok, and P.-M. Cheung, Core vector machines: fast SVM training on very large data sets, J Mach Learn Res 8 (2005), 291-301.
    • (2005) J Mach Learn Res , vol.8 , pp. 291-301
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.-M.3
  • 16
    • 27944509126 scopus 로고    scopus 로고
    • Making SVMs scalable to large data sets using hierarchical cluster indexing
    • H. Yu, J. Yang, J. Han, and X.-L. Li, Making SVMs scalable to large data sets using hierarchical cluster indexing, Data Mining Knowl Discov 11 (2005), 295-321.
    • (2005) Data Mining Knowl Discov , vol.11 , pp. 295-321
    • Yu, H.1    Yang, J.2    Han, J.3    Li, X.-L.4
  • 17
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • I. Steinwart, Sparseness of support vector machines, J Mach Learn Res 4 (2003), 1071-1105.
    • (2003) J Mach Learn Res , vol.4 , pp. 1071-1105
    • Steinwart, I.1
  • 19
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Cambridge, MA, MIT Press
    • G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine learning, In Advances in Neural Information Processing Systems, Vol. 13, Cambridge, MA, MIT Press, 2001, 409-415.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 22
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, The entire regularization path for the support vector machine, J Mach Learn Res 5 (2004), 1391-1415.
    • (2004) J Mach Learn Res , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 25
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, Support vector machine active learning with applications to text classification, J Mach Learn Res 2 (2001), 45-66.
    • (2001) J Mach Learn Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 26
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: analysis, implementation and applications
    • P. Laskov, H. Gehl, S. Krüger, and K.-R. Müller, Incremental support vector learning: analysis, implementation and applications, J Mach Learn Res 7 (2006), 1909-1936.
    • (2006) J Mach Learn Res , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, H.2    Krüger, S.3    Müller, K.-R.4
  • 28
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers for online and active learning
    • A. Bordes, S. Ertekin, J. Wesdon, and L. Bottou, Fast kernel classifiers for online and active learning, J Mach Learn Res 6 (2005), 1579-1619.
    • (2005) J Mach Learn Res , vol.6 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Wesdon, J.3    Bottou, L.4
  • 29
    • 57849102080 scopus 로고    scopus 로고
    • Training invariant support vector machines using selective sampling
    • Cambridge, MA, MIT Press
    • G. Loosli, S. Canu, and L. Bottou, Training invariant support vector machines using selective sampling, In Large Scale Kernel Machines, Cambridge, MA, MIT Press, 2007, 301-320.
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Loosli, G.1    Canu, S.2    Bottou, L.3
  • 30
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • C. Gentile, A new approximate maximal margin classification algorithm, J Mach Learn Res 2 (2001), 213-242.
    • (2001) J Mach Learn Res , vol.2 , pp. 213-242
    • Gentile, C.1
  • 31
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • Y. Li and P. Long, The relaxed online maximum margin algorithm, Mach Learn 46 (2002), 361-387.
    • (2002) Mach Learn , vol.46 , pp. 361-387
    • Li, Y.1    Long, P.2
  • 40
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • S. S. Keerthi, O. Chapelle, and D. DeCoste, Building support vector machines with reduced classifier complexity, J Mach Learn Res 7 (2006), 1493-1515.
    • (2006) J Mach Learn Res , vol.7 , pp. 1493-1515
    • Keerthi, S.S.1    Chapelle, O.2    DeCoste, D.3
  • 42
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property based pattern selection for support vector machines
    • H. Shin and S. Cho, Neighborhood property based pattern selection for support vector machines, Neural Comput 19 (2007), 816-855.
    • (2007) Neural Comput , vol.19 , pp. 816-855
    • Shin, H.1    Cho, S.2
  • 46
    • 33749472827 scopus 로고    scopus 로고
    • Kernel classifier with adaptive structure and fixed memory for process diagnosis
    • H.-Q. Wang, P. Li, F.-R. Gao, Z.-H. Song, and S. X. Ding, Kernel classifier with adaptive structure and fixed memory for process diagnosis, AIChE Journal 52 (2006), 3515-3531.
    • (2006) AIChE Journal , vol.52 , pp. 3515-3531
    • Wang, H.-Q.1    Li, P.2    Gao, F.-R.3    Song, Z.-H.4    Ding, S.X.5
  • 47
    • 40649103591 scopus 로고    scopus 로고
    • Kernel-based online machine learning and support vector reduction
    • S. Agarwal, V. V. Saradhi, and H. Karnick, Kernel-based online machine learning and support vector reduction, Neurocomputing 71 (2008), 1230-1237.
    • (2008) Neurocomputing , vol.71 , pp. 1230-1237
    • Agarwal, S.1    Saradhi, V.V.2    Karnick, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.