메뉴 건너뛰기




Volumn 2, Issue 4, 2001, Pages 213-242

A new approximate maximal margin classification algorithm

Author keywords

Binary classification; Large margin; On line learning; Support vector machines

Indexed keywords

ACCURACY LEVEL; BINARY CLASSIFICATION; CLASSIFICATION ALGORITHM; INCREMENTAL ALGORITHM; INCREMENTAL LEARNING; LARGE MARGIN; LINEARLY SEPARABLE; MAXIMAL MARGIN; ON-LINE ALGORITHMS; ONLINE LEARNING; PERCEPTRON ALGORITHMS; TARGET VECTORS; TRAINING ALGORITHMS;

EID: 84868111801     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (213)

References (48)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. A. Aizerman, E. M. Braverman and L. I. Rozonoer. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 2
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E. L. Allwein, R. E. Schapire and Y. Singer. Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research, 1:113-141, 2000. (Pubitemid 33738778)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 3
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 6
    • 0003408496 scopus 로고    scopus 로고
    • Uci repository of machine learning databases
    • Dept. of Information and Computer Sciences, University of California, Irvine
    • C. Blake, E. Keogh and C. Merz. Uci repository of machine learning databases. Technical report, Dept. of Information and Computer Sciences, University of California, Irvine, 1998. http://www.ics.uci.edu/-mlearn/ MLRepository.html.
    • (1998) Technical Report
    • Blake, C.1    Keogh, E.2    Merz, C.3
  • 7
    • 0000430986 scopus 로고
    • The perceptron: A model for brain functioning
    • H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics, 34:123-135, 1962.
    • (1962) Reviews of Modern Physics , vol.34 , pp. 123-135
    • Block, H.D.1
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
  • 13
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • DOI 10.1023/A:1007662407062
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Journal of Machine Learning, 37(3):277-296, 1999. (Pubitemid 32210619)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 14
    • 0000897328 scopus 로고    scopus 로고
    • The kernel adatron algorithm: A fast and simple learning procedure for support vector machines
    • Morgan Kaufmann, San Mateo, CA
    • T.-T. Friess, N. Cristianini and C. Campbell. The kernel adatron algorithm: A fast and simple learning procedure for support vector machines. In Proceedings of 15th International Conference in Machine Learning, pages 188-196. Morgan Kaufmann, San Mateo, CA, 1998.
    • (1998) Proceedings of 15th International Conference in Machine Learning , pp. 188-196
    • Friess, T.-T.1    Cristianini, N.2    Campbell, C.3
  • 16
    • 84898954071 scopus 로고    scopus 로고
    • Linear hinge loss and average margin
    • Unpublished. Preliminary version MIT Press, Cambridge, MA, 1999
    • C. Gentile and M. K. Warmuth. Linear hinge loss and average margin. Unpublished. Preliminary version in Proc. Advances in Neural Information Processing Systems 11, pages 225-231, MIT Press, Cambridge, MA, 1999, 2001.
    • (2001) Proc. Advances in Neural Information Processing Systems , vol.11 , pp. 225-231
    • Gentile, C.1    Warmuth, M.K.2
  • 17
    • 84868126918 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • T. K. Leen, T. G. Dietterich, and V. Tresp editors, MIT Press, Cambridge, MA
    • C. Gentile. A new approximate maximal margin classification algorithm. In T. K. Leen, T. G. Dietterich, and V. Tresp editors, Advances in Neural Information Processing Systems 13, pages 500-506. MIT Press, Cambridge, MA, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 500-506
    • Gentile, C.1
  • 19
    • 0035370643 scopus 로고    scopus 로고
    • General convergence results for linear discriminant updates
    • DOI 10.1023/A:1010844028087
    • A. J. Grove, N. Littlestone and D. Schuurmans. General convergence results for linear discriminant updates. Journal of Machine Learning, 43(3):173-210, 2001. (Pubitemid 32471832)
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 173-210
    • Grove, A.J.1    Littlestone, N.2    Schuurmans, D.3
  • 21
    • 77950878907 scopus 로고    scopus 로고
    • Making large-scale support vector machines learning practical
    • B. Scholkopf, C Purges and A. Smola (eds.): MIT Press, Cambridge, MA
    • T. Joachims. Making large-scale support vector machines learning practical. In B. Scholkopf, C Purges and A. Smola (eds.): Advances in kernel methods: support vector machines. MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Kernel Methods: Support Vector Machines
    • Joachims, T.1
  • 22
    • 0003601207 scopus 로고    scopus 로고
    • A fast iterative nearest point algorithm for support vector machine classifier design
    • Indian Institute of Science, ISL-99-03
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya and K.R.K. Murthy. A fast iterative nearest point algorithm for support vector machine classifier design. Technical report, Indian Institute of Science, ISL-99-03, 1999.
    • (1999) Technical Report
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 23
    • 0002018981 scopus 로고    scopus 로고
    • Additive versus exponentiated gradient updates for linear prediction
    • J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates for linear prediction. Information and Computation, 132(1):l-64, 1997.
    • (1997) Information and Computation , vol.132 , Issue.1
    • Kivinen, J.1    Warmuth, M.K.2
  • 25
    • 0031375503 scopus 로고    scopus 로고
    • The Perceptron algorithm versus Winnow: Linear versus logarithmic mistake bounds when few input variables are relevant
    • PII S0004370297000398
    • J. Kivinen, M. K. Warmuth and P. Auer. The perceptron algorithm vs. winnow: linear vs. logarithmic mistake bounds when few input variables are relevant. Artificial Intelligence, 97:325-343, 1997. (Pubitemid 127401108)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 325-343
    • Kivinen, J.1    Warmuth, M.K.2    Auer, P.3
  • 30
    • 84898964646 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm. Journal of machine learning
    • forthcoming. Preliminary version in S. A. Solla, T. K. Leen and K. R. Müller editors, MIT Press, Cambridge, MA
    • Y. Li and P. Long. The relaxed online maximum margin algorithm. Journal of machine learning, forthcoming. Preliminary version in S. A. Solla, T. K. Leen and K. R. Müller editors, Advances in Neural Information Processing Systems 12, pages 498-504, MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 498-504
    • Li, Y.1    Long, P.2
  • 31
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 33
    • 84914951454 scopus 로고
    • Multi-surface method of pattern separation
    • O. Mangasarian. Multi-surface method of pattern separation. IEEE Trans, on Information Theory, 14:801-807, 1968.
    • (1968) IEEE Trans, on Information Theory , vol.14 , pp. 801-807
    • Mangasarian, O.1
  • 34
    • 21944433431 scopus 로고    scopus 로고
    • Mathematical programming in data mining
    • O. Mangasarian. Mathematical programming in data mining. Data Mining and Knowledge Discovery, 42(1):183-201, 1997. (Pubitemid 127721240)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.2 , pp. 183-201
    • Mangasarian, O.L.1
  • 37
    • 0031334889 scopus 로고    scopus 로고
    • An improved training algorithm for support vector machines
    • E. Osuna, R. Freund and F. Girosi. An improved training algorithm for support vector machines. In Proceedings of IEEE NNSP'97, 1997.
    • (1997) Proceedings of IEEE NNSP' , vol.97
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 39
    • 84888364466 scopus 로고    scopus 로고
    • Large margin dags for multiclass classification
    • S. A. Solla, T. K. Leen and K. R. Müller editors, MIT Press, Cambridge, MA
    • J. C. Piatt, N. Cristianini and J. Shawe-Taylor. Large margin dags for multiclass classification. In S. A. Solla, T. K. Leen and K. R. Müller editors, Advances in Neural Information Processing Systems 12, pages 547-553. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.12 , pp. 547-553
    • Piatt, J.C.1    Cristianini, N.2    Shawe-Taylor, J.3
  • 41
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, P. Bartlett, Y. Freund and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 44
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation, 12(8):18691887, 2000.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 18691887
    • Schwenk, H.1    Bengio, Y.2
  • 45
    • 0033280387 scopus 로고    scopus 로고
    • On pac learning using winnow, perceptron, and a perceptron-like algorithm
    • ACM
    • R. A. Servedio. On pac learning using winnow, perceptron, and a perceptron-like algorithm. In Proc. 12th Annu. Conf. on Comput. Learning Theory, pages 296-307. ACM, 1999.
    • (1999) Proc. 12th Annu. Conf. on Comput. Learning Theory , pp. 296-307
    • Servedio, R.A.1
  • 47
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • S. Hanson, J. Cowan, and L. Giles, editors, Morgan Kaufmann
    • P. Simard, Y. LeCun and J. Denker. Efficient pattern recognition using a new transformation distance. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in Neural Information Processing Systems, volume 5. Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Simard, P.1    LeCun, Y.2    Denker, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.