메뉴 건너뛰기




Volumn 99, Issue , 2013, Pages 25-37

Neighborhood effective information ratio for hybrid feature subset evaluation and selection

Author keywords

Feature evaluation; Feature selection; Hybrid feature; Neighborhood; Neighborhood effective information ratio; Rough set

Indexed keywords

FEATURE EVALUATION; HYBRID FEATURES; NEIGHBORHOOD; NEIGHBORHOOD EFFECTIVE INFORMATION RATIO; ROUGH SET;

EID: 84867878080     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.04.024     Document Type: Article
Times cited : (25)

References (46)
  • 1
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17:491-502.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 2
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 2004, 5:1205-1224.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 3
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • Liu H., Sun J., Liuand Huijie L. Feature selection with dynamic mutual information. Pattern Recognition 2009, 42:1330-1339.
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liuand Huijie, L.3
  • 4
    • 62249102911 scopus 로고    scopus 로고
    • Approaches to knowledge reduction of covering decision systems based on information theory
    • Li F., Yin Y. Approaches to knowledge reduction of covering decision systems based on information theory. Inf. Sci. 2009, 179:1694-1704.
    • (2009) Inf. Sci. , vol.179 , pp. 1694-1704
    • Li, F.1    Yin, Y.2
  • 5
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Jensen R., Shen Q. New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 2009, 17:824-838.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 6
    • 49449083313 scopus 로고    scopus 로고
    • Feature selection using localized generalization error for supervised classification problems using RBFNN
    • Ng W., Yeung D., Firth M., Tsang E., Wang X. Feature selection using localized generalization error for supervised classification problems using RBFNN. Pattern recognition 2008, 41:3706-3719.
    • (2008) Pattern recognition , vol.41 , pp. 3706-3719
    • Ng, W.1    Yeung, D.2    Firth, M.3    Tsang, E.4    Wang, X.5
  • 7
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., Liu H. Consistency-based search in feature selection. Artif. Intell. 2003, 151:155-176.
    • (2003) Artif. Intell. , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 9
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., Choi C. Input feature selection for classification problems. IEEE Trans. Neural Networks 2002, 13:143-159.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.2
  • 11
    • 72449177821 scopus 로고    scopus 로고
    • A rough set approach to feature selection based on ant colony optimization
    • Chen Y., Miao D., Wang R. A rough set approach to feature selection based on ant colony optimization. Pattern Recognition Lett. 2010, 31:226-233.
    • (2010) Pattern Recognition Lett. , vol.31 , pp. 226-233
    • Chen, Y.1    Miao, D.2    Wang, R.3
  • 12
    • 84867850601 scopus 로고    scopus 로고
    • Wrappers for Performance Enhancement and Oblivious Decision Graphs
    • R. Kohavi, Wrappers for Performance Enhancement and Oblivious Decision Graphs, 1996.
    • (1996)
    • Kohavi, R.1
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G. Wrappers for feature subset selection. Artif. Intell. 1997, 97:273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 14
    • 0347379706 scopus 로고    scopus 로고
    • Multiresolution estimates of classification complexity
    • Singh S. Multiresolution estimates of classification complexity. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25:1534-1539.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1534-1539
    • Singh, S.1
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
    • 78149289039 scopus 로고    scopus 로고
    • Feature selection for clustering - a filter solution, in: Second IEEE International Conference on Data Mining
    • M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering - a filter solution, in: Second IEEE International Conference on Data Mining, 2002, p. 115.
    • (2002) , pp. 115
    • Dash, M.1    Choi, K.2    Scheuermann, P.3    Liu, H.4
  • 19
    • 0036522441 scopus 로고    scopus 로고
    • Complexity measures of supervised classification problems
    • Ho T., Basu M. Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24:289-300.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 289-300
    • Ho, T.1    Basu, M.2
  • 20
    • 67549086086 scopus 로고    scopus 로고
    • Attribute reduction and optimal decision rules acquisition for continuous valued information systems
    • Guan Y., Wang H., Wang Y., Yang F. Attribute reduction and optimal decision rules acquisition for continuous valued information systems. Inf. Sci. 2009, 179:2974-2984.
    • (2009) Inf. Sci. , vol.179 , pp. 2974-2984
    • Guan, Y.1    Wang, H.2    Wang, Y.3    Yang, F.4
  • 22
    • 0029345982 scopus 로고
    • Class-dependent discretization for inductive learning from continuous and mixed-mode data
    • Ching J., Wong A., Chan K. Class-dependent discretization for inductive learning from continuous and mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17:641-651.
    • (1995) IEEE Trans. Pattern Anal. Mach. Intell. , vol.17 , pp. 641-651
    • Ching, J.1    Wong, A.2    Chan, K.3
  • 24
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • Wang X., Yang J., Teng X., Xia W., Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Lett. 2007, 28:459-471.
    • (2007) Pattern Recognition Lett. , vol.28 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 25
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski R., Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Lett. 2003, 24:833-849.
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 833-849
    • Swiniarski, R.1    Skowron, A.2
  • 26
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: an accelerator for attribute reduction in rough set theory
    • Qian Y., Liang J., Pedrycz W., Dang C. Positive approximation: an accelerator for attribute reduction in rough set theory. Artif. Intell. 2010, 174:597-618.
    • (2010) Artif. Intell. , vol.174 , pp. 597-618
    • Qian, Y.1    Liang, J.2    Pedrycz, W.3    Dang, C.4
  • 27
    • 79953066019 scopus 로고    scopus 로고
    • An efficient accelerator for attribute reduction from incomplete data in rough set framework
    • Qian Y., Liang J., Pedrycz W., Dang C. An efficient accelerator for attribute reduction from incomplete data in rough set framework. Pattern Recognition 2011, 44:1658-1670.
    • (2011) Pattern Recognition , vol.44 , pp. 1658-1670
    • Qian, Y.1    Liang, J.2    Pedrycz, W.3    Dang, C.4
  • 28
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • Dubois D., Prade H. Rough fuzzy sets and fuzzy rough sets. Int. J. General Syst. 1990, 17:191-209.
    • (1990) Int. J. General Syst. , vol.17 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 29
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
    • Jensen R., Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowl. Data Eng. 2004, 16:1457-1471.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 30
  • 31
    • 76049113696 scopus 로고    scopus 로고
    • Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications
    • Hu Q., Zhang L., Chen D., Pedrycz W., Yu D. Gaussian kernel based fuzzy rough sets: model, uncertainty measures and applications. Int. J. Approximate Reasoning 2010, 51:453-471.
    • (2010) Int. J. Approximate Reasoning , vol.51 , pp. 453-471
    • Hu, Q.1    Zhang, L.2    Chen, D.3    Pedrycz, W.4    Yu, D.5
  • 32
    • 77956394680 scopus 로고    scopus 로고
    • Soft fuzzy rough sets for robust feature evaluation and selection
    • Hu Q., An S., Yu D. Soft fuzzy rough sets for robust feature evaluation and selection. Inf. Sci. 2010, 180:4384-4400.
    • (2010) Inf. Sci. , vol.180 , pp. 4384-4400
    • Hu, Q.1    An, S.2    Yu, D.3
  • 34
    • 0032204205 scopus 로고    scopus 로고
    • Relational interpretations of neighborhood operators and rough set approximation operators
    • Yao Y. Relational interpretations of neighborhood operators and rough set approximation operators. Inf. Sci. 1998, 111:239-259.
    • (1998) Inf. Sci. , vol.111 , pp. 239-259
    • Yao, Y.1
  • 35
    • 0036646071 scopus 로고    scopus 로고
    • Neighborhood operator systems and approximations
    • Wu W., Zhang W. Neighborhood operator systems and approximations. Inf. Sci. 2002, 144:201-217.
    • (2002) Inf. Sci. , vol.144 , pp. 201-217
    • Wu, W.1    Zhang, W.2
  • 36
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Hu Q., Yu D., Liu J., Wu C. Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 2008, 178:3577-3594.
    • (2008) Inf. Sci. , vol.178 , pp. 3577-3594
    • Hu, Q.1    Yu, D.2    Liu, J.3    Wu, C.4
  • 37
    • 77955091406 scopus 로고    scopus 로고
    • Selecting discrete and continuous features based on neighborhood decision error minimization
    • Hu Q., Pedrycz W., Yu D., Lang J. Selecting discrete and continuous features based on neighborhood decision error minimization. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 2010, 40:137-150.
    • (2010) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.40 , pp. 137-150
    • Hu, Q.1    Pedrycz, W.2    Yu, D.3    Lang, J.4
  • 38
    • 77952545392 scopus 로고    scopus 로고
    • Feature evaluation and selection based on neighborhood soft margin
    • Hu Q., Che X., Zhang L., Yu D. Feature evaluation and selection based on neighborhood soft margin. Neurocomputing 2010, 73:2114-2124.
    • (2010) Neurocomputing , vol.73 , pp. 2114-2124
    • Hu, Q.1    Che, X.2    Zhang, L.3    Yu, D.4
  • 39
    • 84867870116 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 40
    • 84867870993 scopus 로고    scopus 로고
    • A Practical Guide to Support Vector Classification
    • C. Hsu, C. Chang, C. Lin, et al., A Practical Guide to Support Vector Classification, 2003.
    • (2003)
    • Hsu, C.1    Chang, C.2    Lin, C.3
  • 41
    • 33744503185 scopus 로고    scopus 로고
    • Support vector machines based on k-means clustering for real-time business intelligence systems
    • Wang J., Wu X., Zhang C. Support vector machines based on k-means clustering for real-time business intelligence systems. Int. J. Bus. Intell. Data Mining 2005, 1:54-64.
    • (2005) Int. J. Bus. Intell. Data Mining , vol.1 , pp. 54-64
    • Wang, J.1    Wu, X.2    Zhang, C.3
  • 42
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., Choi C. Input feature selection for classification problems. IEEE Trans. Neural Networks 2002, 13:143-159.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.2
  • 43
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric
    • Proceedings of the Seventeenth International Conference on Machine Learning,
    • M.A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in: Proceedings of the Seventeenth International Conference on Machine Learning, 2000, pp. 359-366.
    • (2000) class machine learning , pp. 359-366
    • Hall, M.A.1
  • 44
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of relief
    • (ECML-94)
    • Kononenko I. Estimating attributes: analysis and extensions of relief. Mach. Learn. 1994, 784:171-182. (ECML-94).
    • (1994) Mach. Learn. , vol.784 , pp. 171-182
    • Kononenko, I.1
  • 45
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • Gheyas I., Smith L. Feature subset selection in large dimensionality domains. Pattern Recognition 2010, 43:5-13.
    • (2010) Pattern Recognition , vol.43 , pp. 5-13
    • Gheyas, I.1    Smith, L.2
  • 46
    • 84867875264 scopus 로고    scopus 로고
    • Data Mining Tools see5 and c5.0
    • R. Quinlan, Data Mining Tools see5 and c5.0, 2004.
    • (2004)
    • Quinlan, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.