메뉴 건너뛰기




Volumn 51, Issue 4, 2010, Pages 453-471

Gaussian kernel based fuzzy rough sets: Model, uncertainty measures and applications

Author keywords

Feature selection; Fuzzy set; Gaussian kernel; Rough set; Uncertainty measure

Indexed keywords

APPROXIMATION ALGORITHMS; FEATURE EXTRACTION; FUNCTION EVALUATION; FUZZY SETS; GAUSSIAN DISTRIBUTION; INTELLIGENT SYSTEMS; LEARNING SYSTEMS; MATRIX ALGEBRA; UNCERTAINTY ANALYSIS;

EID: 76049113696     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.01.004     Document Type: Article
Times cited : (216)

References (63)
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Mach. Learning 20 (1995) 273-297
    • (1995) Mach. Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining Knowled. Discovery 2 (1998) 121-167
    • (1998) Data Mining Knowled. Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 5
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G., and Anouar F.E. Generalized discriminant analysis using a kernel approach. Neural Comput. 12 (2000) 2385-2404
    • (2000) Neural Comput. , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.E.2
  • 6
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A., and Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 (1998) 1299-1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 7
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • Vincent P., and Bengio Y. Kernel matching pursuit. Mach. Learn. 48 (2002) 65-187
    • (2002) Mach. Learn. , vol.48 , pp. 65-187
    • Vincent, P.1    Bengio, Y.2
  • 9
    • 76049093423 scopus 로고    scopus 로고
    • Theory of rough sets and statistical learning
    • Lu R.Q. (Ed), Tsinghua Publishing House
    • Wang J., and Tao Q. Theory of rough sets and statistical learning. In: Lu R.Q. (Ed). In Knowledge Science and Computational Science (2003), Tsinghua Publishing House
    • (2003) In Knowledge Science and Computational Science
    • Wang, J.1    Tao, Q.2
  • 10
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Hu Q.H., Xie Z.X., and Yu D.R. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40 (2007) 3509-3521
    • (2007) Pattern Recognit. , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 11
    • 0029310113 scopus 로고
    • Learning in relational databases: a rough set approach
    • Hu X., and Cercone N. Learning in relational databases: a rough set approach. Comput. Intell. 11 (1995) 323-338
    • (1995) Comput. Intell. , vol.11 , pp. 323-338
    • Hu, X.1    Cercone, N.2
  • 13
    • 0032188308 scopus 로고    scopus 로고
    • Rough set theory and its applications to data analysis
    • Pawlak Z. Rough set theory and its applications to data analysis. Cybern. Syst. 29 (1998) 661-688
    • (1998) Cybern. Syst. , vol.29 , pp. 661-688
    • Pawlak, Z.1
  • 16
    • 34250741488 scopus 로고    scopus 로고
    • Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification
    • Lingras P., and Butz C. Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification. Inform. Sci. 177 (2007) 3782-3798
    • (2007) Inform. Sci. , vol.177 , pp. 3782-3798
    • Lingras, P.1    Butz, C.2
  • 19
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • Dubois D., and Prade H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17 (1990) 191-209
    • (1990) Int. J. Gen. Syst. , vol.17 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 20
    • 0001164225 scopus 로고    scopus 로고
    • Axiomatics for fuzzy rough sets
    • Morsi Nehad N., and Yakout M.M. Axiomatics for fuzzy rough sets. Fuzzy Sets Syst. 100 (1998) 327-342
    • (1998) Fuzzy Sets Syst. , vol.100 , pp. 327-342
    • Morsi Nehad, N.1    Yakout, M.M.2
  • 21
    • 1642525198 scopus 로고    scopus 로고
    • Constructive and axiomatic approaches of fuzzy approximation operators
    • Wu W.-Z., and Zhang W.-X. Constructive and axiomatic approaches of fuzzy approximation operators. Inform. Sci. 159 (2004) 233-254
    • (2004) Inform. Sci. , vol.159 , pp. 233-254
    • Wu, W.-Z.1    Zhang, W.-X.2
  • 23
    • 33645801018 scopus 로고    scopus 로고
    • Fuzzy probabilistic approximation spaces and their information measures
    • Hu Q.H., Yu D.R., Xie Z.X., and Liu J.F. Fuzzy probabilistic approximation spaces and their information measures. IEEE Trans. Fuzzy Syst. 14 (2006) 191-201
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , pp. 191-201
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3    Liu, J.F.4
  • 24
    • 33646559967 scopus 로고    scopus 로고
    • On the t-transitivity of kernels
    • Moser B. On the t-transitivity of kernels. Fuzzy Sets Syst. 157 (2006) 787-1796
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 787-1796
    • Moser, B.1
  • 25
    • 33845393709 scopus 로고    scopus 로고
    • On representing and generating kernels by fuzzy equivalence relations
    • Moser B. On representing and generating kernels by fuzzy equivalence relations. J. Mach. Learn. Res. 7 (2006) 2603-2620
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2603-2620
    • Moser, B.1
  • 26
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Hu Q.H., Yu D.R., and Xie Z.X. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognit. Lett. 27 (2006) 414-423
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 27
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: a statistics perspective
    • Genton M.G. Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2 (2001) 299-312
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 28
    • 1342328031 scopus 로고    scopus 로고
    • An axiomatic characterization of a fuzzy generalization of rough sets
    • Mi J.-S., and Zhang W.-X. An axiomatic characterization of a fuzzy generalization of rough sets. Inform. Sci. 160 (2004) 235-249
    • (2004) Inform. Sci. , vol.160 , pp. 235-249
    • Mi, J.-S.1    Zhang, W.-X.2
  • 29
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
    • Jensen R., and Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowledge Data Eng. 16 (2004) 1457-1471
    • (2004) IEEE Trans. Knowledge Data Eng. , vol.16 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 30
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • Jensen R., and Shen Q. New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17 (2009) 824-828
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , pp. 824-828
    • Jensen, R.1    Shen, Q.2
  • 31
    • 0036603703 scopus 로고    scopus 로고
    • A reformulation of entropy in the presence of indistinguishability operators
    • Hernandez E., and Recasens J. A reformulation of entropy in the presence of indistinguishability operators. Fuzzy Sets Syst. 128 (2002) 185-196
    • (2002) Fuzzy Sets Syst. , vol.128 , pp. 185-196
    • Hernandez, E.1    Recasens, J.2
  • 32
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • Duntsch I., and Gediga G. Uncertainty measures of rough set prediction. Artif. Intell. 106 (1998) 09-137
    • (1998) Artif. Intell. , vol.106 , pp. 09-137
    • Duntsch, I.1    Gediga, G.2
  • 33
    • 34948842036 scopus 로고    scopus 로고
    • Measures for evaluating the decision performance of a decision table in rough set theory
    • Qian Y.H., Liang J.Y., Li D.Y., Zhang H.Y., and Dang C. Measures for evaluating the decision performance of a decision table in rough set theory. Inform. Sci. 178 (2008) 181-202
    • (2008) Inform. Sci. , vol.178 , pp. 181-202
    • Qian, Y.H.1    Liang, J.Y.2    Li, D.Y.3    Zhang, H.Y.4    Dang, C.5
  • 34
  • 35
    • 34047267165 scopus 로고    scopus 로고
    • Uncertainty measures for fuzzy relations and their applications
    • Yu D., Hu Q.H., and Wu C. Uncertainty measures for fuzzy relations and their applications. Appl. Soft Comput. 7 (2007) 1135-1143
    • (2007) Appl. Soft Comput. , vol.7 , pp. 1135-1143
    • Yu, D.1    Hu, Q.H.2    Wu, C.3
  • 37
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Sikonja M., and Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learning 53 (2003) 23-69
    • (2003) Mach. Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 39
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: algorithms, theories, and applications
    • Sun Y.J. Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 035-1051
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , pp. 035-1051
    • Sun, Y.J.1
  • 40
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learning Res. 5 (2004) 1205-1224
    • (2004) J. Mach. Learning Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 41
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowledge Data Eng. 17 (2005) 491-502
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 42
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 537-550
    • Battiti, R.1
  • 44
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., and Liu H. Consistency-based search in feature selection. Artif. Intell. 151 (2003) 155-176
    • (2003) Artif. Intell. , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 45
    • 31744443319 scopus 로고    scopus 로고
    • Genetic programming for simultaneous feature selection and classifier design
    • Muni D.P., Pal N.R., and Das J. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. - Part B: Cybern. 36 (2006) 106-117
    • (2006) IEEE Trans. Syst. Man Cybern. - Part B: Cybern. , vol.36 , pp. 106-117
    • Muni, D.P.1    Pal, N.R.2    Das, J.3
  • 47
    • 34548626233 scopus 로고    scopus 로고
    • Bilinear analysis for Kernel selection and nonlinear feature extraction
    • Yang S., Yan S., Zhang C., et al. Bilinear analysis for Kernel selection and nonlinear feature extraction. IEEE Trans. Neural Networks 18 (2007) 442-1452
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 442-1452
    • Yang, S.1    Yan, S.2    Zhang, C.3
  • 48
    • 0035272287 scopus 로고    scopus 로고
    • An introduction to kernel-based learning algorithms
    • Muller K.R., Mika S., Ratsch G., et al. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Networks 12 (2001) 181-201
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 181-201
    • Muller, K.R.1    Mika, S.2    Ratsch, G.3
  • 49
    • 76049106951 scopus 로고    scopus 로고
    • R. Gilad-Bachrach, A. Navot, N. Tishby, Margin based feature selection- theory and algorithms, in: Proceeding of ICML 2004, pp. 43-50.
    • R. Gilad-Bachrach, A. Navot, N. Tishby, Margin based feature selection- theory and algorithms, in: Proceeding of ICML 2004, pp. 43-50.
  • 50
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90 (1997) 111-127
    • (1997) Fuzzy Sets Syst. , vol.90 , pp. 111-127
    • Zadeh, L.A.1
  • 51
    • 0036532805 scopus 로고    scopus 로고
    • Feature analysis through information granulation and fuzzy sets
    • Pedrycz W., and Vukovich G. Feature analysis through information granulation and fuzzy sets. Pattern Recognit. 35 (2002) 825-834
    • (2002) Pattern Recognit. , vol.35 , pp. 825-834
    • Pedrycz, W.1    Vukovich, G.2
  • 52
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., and Cowan C.F.N. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2 (1991) 302-309
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2
  • 53
    • 33748894346 scopus 로고    scopus 로고
    • Rough set-based approach to feature selection in customer relationship management
    • Tseng T.-L., and Huang C.-C. Rough set-based approach to feature selection in customer relationship management. Omega 35 (2007) 365-383
    • (2007) Omega , vol.35 , pp. 365-383
    • Tseng, T.-L.1    Huang, C.-C.2
  • 54
    • 36248994777 scopus 로고    scopus 로고
    • A rough set approach for the discovery of classification rules in interval-valued information systems
    • Leung Y., Fischer M.M., Wu W.-Z., and Mi J.-S. A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason. 47 (2008) 233-246
    • (2008) Int. J. Approx. Reason. , vol.47 , pp. 233-246
    • Leung, Y.1    Fischer, M.M.2    Wu, W.-Z.3    Mi, J.-S.4
  • 55
    • 45049086776 scopus 로고    scopus 로고
    • Generalized fuzzy rough approximation operators based on fuzzy coverings
    • Li T.-J., Leung Y., and Zhang W.-X. Generalized fuzzy rough approximation operators based on fuzzy coverings. Int. J. Approx. Reason. 48 (2008) 836-856
    • (2008) Int. J. Approx. Reason. , vol.48 , pp. 836-856
    • Li, T.-J.1    Leung, Y.2    Zhang, W.-X.3
  • 56
    • 37249058009 scopus 로고    scopus 로고
    • Attribute reduction based on evidence theory in incomplete decision systems
    • Wu W.-Z. Attribute reduction based on evidence theory in incomplete decision systems. Inform. Sci. 178 (2008) 1355-1371
    • (2008) Inform. Sci. , vol.178 , pp. 1355-1371
    • Wu, W.-Z.1
  • 58
    • 0001375356 scopus 로고    scopus 로고
    • Two views of the theory of rough sets in finite universes
    • Yao Y.Y. Two views of the theory of rough sets in finite universes. Int. J. Approx. Reason. 15 (1996) 291-317
    • (1996) Int. J. Approx. Reason. , vol.15 , pp. 291-317
    • Yao, Y.Y.1
  • 59
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Yao Y.Y., and Zhao Y. Attribute reduction in decision-theoretic rough set models. Inform. Sci. 178 (2008) 3356-3373
    • (2008) Inform. Sci. , vol.178 , pp. 3356-3373
    • Yao, Y.Y.1    Zhao, Y.2
  • 60
    • 45849111442 scopus 로고    scopus 로고
    • On fuzzy approximation operators in attribute reduction with fuzzy rough sets
    • Zhao S., and Tsang E.C.C. On fuzzy approximation operators in attribute reduction with fuzzy rough sets. Inform. Sci. 178 (2008) 3163-3176
    • (2008) Inform. Sci. , vol.178 , pp. 3163-3176
    • Zhao, S.1    Tsang, E.C.C.2
  • 61
    • 58849144238 scopus 로고    scopus 로고
    • Knowledge structure, knowledge granulation and knowledge distance in a knowledge base
    • Qian Y.H., Liang J.Y., and Dang C.Y. Knowledge structure, knowledge granulation and knowledge distance in a knowledge base. Int. J. Approx. Reason. 50 (2009) 174-188
    • (2009) Int. J. Approx. Reason. , vol.50 , pp. 174-188
    • Qian, Y.H.1    Liang, J.Y.2    Dang, C.Y.3
  • 62
    • 45049083233 scopus 로고    scopus 로고
    • Generalisation of roughness bounds in rough set operations
    • Yang Y.J., and John R.I. Generalisation of roughness bounds in rough set operations. Int. J. Approx. Reason. 48 (2008) 868-878
    • (2008) Int. J. Approx. Reason. , vol.48 , pp. 868-878
    • Yang, Y.J.1    John, R.I.2
  • 63
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Morgan Kaufmann, San Mateo, CA
    • U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proc. Thirteenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, 1993, pp. 1022-1027.
    • (1993) Proc. Thirteenth International Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.