메뉴 건너뛰기




Volumn 25, Issue 1, 2007, Pages 49-54

Predicting protein n-glycosylation by combining functional domain and secretion information

Author keywords

Bioinformatics; Domain; N glycosylation; Partial least squares; PLS; Prediction; Secreted protein; Support Vector Machine; SVM

Indexed keywords

ACCURACY; ARTICLE; CALCULATION; EVALUATION; GLYCOSYLATION; PARTIAL LEAST SQUARES REGRESSION; PREDICTION; PRIORITY JOURNAL; PROTEIN DOMAIN; PROTEIN SECRETION; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINE;

EID: 34547224599     PISSN: 07391102     EISSN: 15380254     Source Type: Journal    
DOI: 10.1080/07391102.2007.10507154     Document Type: Article
Times cited : (13)

References (26)
  • 1
    • 0036462601 scopus 로고    scopus 로고
    • Roth, J., 2002. Chem Rev, 102:285–303.
    • (2002) Chem Rev , vol.102 , pp. 285-303
    • Roth, J.1
  • 6
    • 0020713174 scopus 로고
    • Bause, E., 1983. Biochem J, 209:331–336.
    • (1983) Biochem J , vol.209 , pp. 331-336
    • Bause, E.1
  • 12
    • 0034887203 scopus 로고    scopus 로고
    • Gene Ontology Consortium. 2001. Genome Res, 11:1425–1433.
    • (2001) Genome Res , vol.11 , pp. 1425-1433
  • 25
    • 0003798642 scopus 로고    scopus 로고
    • Making Large-Scale SVM Learning Practical. Advances in Kernel Methods
    • MIT-Press
    • Joachims, T., and BSaCBaAS. 1999. “ Making Large-Scale SVM Learning Practical. Advances in Kernel Methods ”. In Support Vector Learning. MIT-Press.
    • (1999) Support Vector Learning.
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.