-
1
-
-
0025010979
-
The GTPase superfamily: a conserved switch for diverse cell functions.
-
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990, 348:125-132.
-
(1990)
Nature
, vol.348
, pp. 125-132
-
-
Bourne, H.R.1
Sanders, D.A.2
McCormick, F.3
-
2
-
-
0026026818
-
The GTPase superfamily: conserved structure and molecular mechanism.
-
Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 1991, 349:117-127.
-
(1991)
Nature
, vol.349
, pp. 117-127
-
-
Bourne, H.R.1
Sanders, D.A.2
McCormick, F.3
-
3
-
-
0024790320
-
A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells.
-
Hoshino S, Miyazawa H, Enomoto T, Hanaoka F, Kikuchi Y, Kikuchi A, Ui M. A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J 1989, 8:3807-3814.
-
(1989)
EMBO J
, vol.8
, pp. 3807-3814
-
-
Hoshino, S.1
Miyazawa, H.2
Enomoto, T.3
Hanaoka, F.4
Kikuchi, Y.5
Kikuchi, A.6
Ui, M.7
-
4
-
-
0032575550
-
Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF). Its identification as eRF3 interacting with eRF1.
-
Hoshino S, Imai M, Mizutani M, Kikuchi Y, Hanaoka F, Ui M, Katada T. Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF). Its identification as eRF3 interacting with eRF1. J Biol Chem 1998, 273:22254-22259.
-
(1998)
J Biol Chem
, vol.273
, pp. 22254-22259
-
-
Hoshino, S.1
Imai, M.2
Mizutani, M.3
Kikuchi, Y.4
Hanaoka, F.5
Ui, M.6
Katada, T.7
-
5
-
-
0032437714
-
The product of the mammalian orthologue of the Saccharomyces cerevisiae HBS1 gene is phylogenetically related to eukaryotic release factor 3 (eRF3) but does not carry eRF3-like activity.
-
Wallrapp C, Verrier SB, Zhouravleva G, Philippe H, Philippe M, Gress TM, Jean-Jean O. The product of the mammalian orthologue of the Saccharomyces cerevisiae HBS1 gene is phylogenetically related to eukaryotic release factor 3 (eRF3) but does not carry eRF3-like activity. FEBS Lett 1998, 440:387-392.
-
(1998)
FEBS Lett
, vol.440
, pp. 387-392
-
-
Wallrapp, C.1
Verrier, S.B.2
Zhouravleva, G.3
Philippe, H.4
Philippe, M.5
Gress, T.M.6
Jean-Jean, O.7
-
6
-
-
0021262150
-
Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A -HN and confer cold sensitivity in the presence of M and L-A-HN.
-
Ridley SP, Sommer SS, Wickner RB. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A -HN and confer cold sensitivity in the presence of M and L-A-HN. Mol Cell Biol 1984, 4:761-770.
-
(1984)
Mol Cell Biol
, vol.4
, pp. 761-770
-
-
Ridley, S.P.1
Sommer, S.S.2
Wickner, R.B.3
-
7
-
-
0034616691
-
Mouse and human GTPBP2, newly identified members of the GP-1 family of GTPase.
-
Kudo H, Senju S, Mitsuya H, Nishimura Y. Mouse and human GTPBP2, newly identified members of the GP-1 family of GTPase. Biochem Biophys Res Commun 2000, 272:456-465.
-
(2000)
Biochem Biophys Res Commun
, vol.272
, pp. 456-465
-
-
Kudo, H.1
Senju, S.2
Mitsuya, H.3
Nishimura, Y.4
-
8
-
-
78649839805
-
Dissection of Dom34-Hbs1 reveals independent functions in two RNA quality control pathways.
-
van den Elzen AM, Henri J, Lazar N, Gas ME, Durand D, Lacroute F, Nicaise M, van Tilbeurgh H, Seraphin B, Graille M. Dissection of Dom34-Hbs1 reveals independent functions in two RNA quality control pathways. Nat Struct Mol Biol 2010, 17:1446-1452.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1446-1452
-
-
van den Elzen, A.M.1
Henri, J.2
Lazar, N.3
Gas, M.E.4
Durand, D.5
Lacroute, F.6
Nicaise, M.7
van Tilbeurgh, H.8
Seraphin, B.9
Graille, M.10
-
9
-
-
77957801203
-
Structure of the Dom34-Hbs1 complex and implications for no-go decay.
-
Chen L, Muhlrad D, Hauryliuk V, Cheng Z, Lim MK, Shyp V, Parker R, Song H. Structure of the Dom34-Hbs1 complex and implications for no-go decay. Nat Struct Mol Biol 2010, 17:1233-1240.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1233-1240
-
-
Chen, L.1
Muhlrad, D.2
Hauryliuk, V.3
Cheng, Z.4
Lim, M.K.5
Shyp, V.6
Parker, R.7
Song, H.8
-
10
-
-
79958809003
-
Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80s ribosome.
-
Becker T, Armache JP, Jarasch A, Anger AM, Villa E, Sieber H, Motaal BA, Mielke T, Berninghausen O, Beckmann R. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80s ribosome. Nat Struct Mol Biol 2011, 18:715-720.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 715-720
-
-
Becker, T.1
Armache, J.P.2
Jarasch, A.3
Anger, A.M.4
Villa, E.5
Sieber, H.6
Motaal, B.A.7
Mielke, T.8
Berninghausen, O.9
Beckmann, R.10
-
11
-
-
33746728252
-
Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3.
-
Hauryliuk V, Zavialov A, Kisselev L, Ehrenberg M. Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3. Biochimie 2006, 88:747-757.
-
(2006)
Biochimie
, vol.88
, pp. 747-757
-
-
Hauryliuk, V.1
Zavialov, A.2
Kisselev, L.3
Ehrenberg, M.4
-
12
-
-
77449158439
-
GTP-dependent structural rearrangement of the eRF1:e RF3 complex and eRF3 sequence motifs essential for PABP binding.
-
Kononenko AV, Mitkevich VA, Atkinson GC, Tenson T, Dubovaya VI, Frolova LY, Makarov AA, Hauryliuk V. GTP-dependent structural rearrangement of the eRF1:e RF3 complex and eRF3 sequence motifs essential for PABP binding. Nucleic Acids Res 2010, 38:548-558.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 548-558
-
-
Kononenko, A.V.1
Mitkevich, V.A.2
Atkinson, G.C.3
Tenson, T.4
Dubovaya, V.I.5
Frolova, L.Y.6
Makarov, A.A.7
Hauryliuk, V.8
-
13
-
-
44449153482
-
Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination.
-
Fan-Minogue H, Du M, Pisarev AV, Kallmeyer AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV, Bedwell DM. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 2008, 30:599-609.
-
(2008)
Mol Cell
, vol.30
, pp. 599-609
-
-
Fan-Minogue, H.1
Du, M.2
Pisarev, A.V.3
Kallmeyer, A.K.4
Salas-Marco, J.5
Keeling, K.M.6
Thompson, S.R.7
Pestova, T.V.8
Bedwell, D.M.9
-
16
-
-
77957935294
-
Dom34:Hbs1 promotes subunit dissociation and peptidyl-trna drop-off to initiate no-go decay.
-
Shoemaker CJ, Eyler DE, Green R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-trna drop-off to initiate no-go decay. Science 2010, 330:369-372.
-
(2010)
Science
, vol.330
, pp. 369-372
-
-
Shoemaker, C.J.1
Eyler, D.E.2
Green, R.3
-
17
-
-
79955626576
-
Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80s ribosomes and stalled elongation complexes.
-
Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80s ribosomes and stalled elongation complexes. EMBO J 2011, 30:1804-1817.
-
(2011)
EMBO J
, vol.30
, pp. 1804-1817
-
-
Pisareva, V.P.1
Skabkin, M.A.2
Hellen, C.U.3
Pestova, T.V.4
Pisarev, A.V.5
-
18
-
-
0033546405
-
The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate-binding protein.
-
Hoshino S, Imai M, Kobayashi T, Uchida N, Katada T. The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. Direct association of erf3/GSPT with polyadenylate-binding protein. J Biol Chem 1999, 274:16677-16680.
-
(1999)
J Biol Chem
, vol.274
, pp. 16677-16680
-
-
Hoshino, S.1
Imai, M.2
Kobayashi, T.3
Uchida, N.4
Katada, T.5
-
19
-
-
0037184899
-
A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in cap/poly(A)-dependent translation.
-
Uchida N, Hoshino S, Imataka H, Sonenberg N, Katada T. A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in cap/poly(A)-dependent translation. J Biol Chem 2002, 277:50286-50292.
-
(2002)
J Biol Chem
, vol.277
, pp. 50286-50292
-
-
Uchida, N.1
Hoshino, S.2
Imataka, H.3
Sonenberg, N.4
Katada, T.5
-
20
-
-
0141866883
-
Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation.
-
Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 2003, 278:38287-38291.
-
(2003)
J Biol Chem
, vol.278
, pp. 38287-38291
-
-
Hosoda, N.1
Kobayashi, T.2
Uchida, N.3
Funakoshi, Y.4
Kikuchi, Y.5
Hoshino, S.6
Katada, T.7
-
21
-
-
36849079370
-
Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases.
-
Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T, Katada T, Hoshino S. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 2007, 21:3135-3148.
-
(2007)
Genes Dev
, vol.21
, pp. 3135-3148
-
-
Funakoshi, Y.1
Doi, Y.2
Hosoda, N.3
Uchida, N.4
Osawa, M.5
Shimada, I.6
Tsujimoto, M.7
Suzuki, T.8
Katada, T.9
Hoshino, S.10
-
22
-
-
0036096544
-
Paip1 interacts with polyA) binding protein through two independent binding motifs.
-
Roy G, De Crescenzo G, Khaleghpour K, Kahvejian A, O'Connor-McCourt M, Sonenberg N. Paip1 interacts with polyA) binding protein through two independent binding motifs. Mol Cell Biol 2002, 22:3769-3782.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 3769-3782
-
-
Roy, G.1
De Crescenzo, G.2
Khaleghpour, K.3
Kahvejian, A.4
O'Connor-McCourt, M.5
Sonenberg, N.6
-
23
-
-
77956319461
-
Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein.
-
Kozlov G, Gehring K. Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein. PLoS One 2010, 5:e10169.
-
(2010)
PLoS One
, vol.5
-
-
Kozlov, G.1
Gehring, K.2
-
24
-
-
0035801392
-
Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast.
-
Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T. Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J 2001, 20:4684-4693.
-
(2001)
EMBO J
, vol.20
, pp. 4684-4693
-
-
Araki, Y.1
Takahashi, S.2
Kobayashi, T.3
Kajiho, H.4
Hoshino, S.5
Katada, T.6
-
25
-
-
0033777266
-
Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA.
-
van Hoof A, Staples RR, Baker RE, Parker R. Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol Cell Biol 2000, 20:8230-8243.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 8230-8243
-
-
van Hoof, A.1
Staples, R.R.2
Baker, R.E.3
Parker, R.4
-
26
-
-
0027320701
-
A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation.
-
Decker CJ, Parker R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 1993, 7:1632-1643.
-
(1993)
Genes Dev
, vol.7
, pp. 1632-1643
-
-
Decker, C.J.1
Parker, R.2
-
27
-
-
84856218082
-
Nuclear quality control of RNA polymerase II transcripts.
-
Schmid M, Jensen TH. Nuclear quality control of RNA polymerase II transcripts. Wiley Interdiscip Rev RNA 2010, 1:474-485.
-
(2010)
Wiley Interdiscip Rev RNA
, vol.1
, pp. 474-485
-
-
Schmid, M.1
Jensen, T.H.2
-
28
-
-
0032824911
-
Linking mRNA turnover and translation: assessing the polyribosomal association of mRNA decay factors and degradative intermediates.
-
Mangus DA, Jacobson A. Linking mRNA turnover and translation: assessing the polyribosomal association of mRNA decay factors and degradative intermediates. Methods 1999, 17:28-37.
-
(1999)
Methods
, vol.17
, pp. 28-37
-
-
Mangus, D.A.1
Jacobson, A.2
-
29
-
-
0025267840
-
Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae.
-
Herrick D, Parker R, Jacobson A. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 1990, 10:2269-2284.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 2269-2284
-
-
Herrick, D.1
Parker, R.2
Jacobson, A.3
-
30
-
-
0028225993
-
Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA.
-
Beelman CA, Parker R. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J Biol Chem 1994, 269:9687-9692.
-
(1994)
J Biol Chem
, vol.269
, pp. 9687-9692
-
-
Beelman, C.A.1
Parker, R.2
-
31
-
-
70249141564
-
Co-translational mRNA decay in Saccharomyces cerevisiae.
-
Hu W, Sweet TJ, Chamnongpol S, Baker KE, Coller J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 2009, 461:225-229.
-
(2009)
Nature
, vol.461
, pp. 225-229
-
-
Hu, W.1
Sweet, T.J.2
Chamnongpol, S.3
Baker, K.E.4
Coller, J.5
-
33
-
-
0037968357
-
Decapping and decay of messenger RNA occur in cytoplasmic processing bodies.
-
Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003, 300:805-808.
-
(2003)
Science
, vol.300
, pp. 805-808
-
-
Sheth, U.1
Parker, R.2
-
34
-
-
0035830508
-
The transcription factor associated ccr4 and caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae.
-
Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R. The transcription factor associated ccr4 and caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 2001, 104:377-386.
-
(2001)
Cell
, vol.104
, pp. 377-386
-
-
Tucker, M.1
Valencia-Sanchez, M.A.2
Staples, R.R.3
Chen, J.4
Denis, C.L.5
Parker, R.6
-
35
-
-
28544450636
-
Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover.
-
Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005, 12:1054-1063.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 1054-1063
-
-
Yamashita, A.1
Chang, T.C.2
Yamashita, Y.3
Zhu, W.4
Zhong, Z.5
Chen, C.Y.6
Shyu, A.B.7
-
36
-
-
79956117132
-
Lsm1-7-pat1 complex: a link between 3′ and 5′-ends in mRNA decay?
-
Tharun S. Lsm1-7-pat1 complex: a link between 3′ and 5′-ends in mRNA decay? RNA Biol 2009, 6:228-232.
-
(2009)
RNA Biol
, vol.6
, pp. 228-232
-
-
Tharun, S.1
-
37
-
-
8544231439
-
The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay.
-
Kobayashi T, Funakoshi Y, Hoshino S, Katada T. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 2004, 279:45693-45700.
-
(2004)
J Biol Chem
, vol.279
, pp. 45693-45700
-
-
Kobayashi, T.1
Funakoshi, Y.2
Hoshino, S.3
Katada, T.4
-
38
-
-
0033251605
-
Novel function of the eukaryotic polypeptide-chain releasing factor 3 (eRF3/GSPT) in the mRNA degradation pathway.
-
Hoshino S, Hosoda N, Araki Y, Kobayashi T, Uchida N, Funakoshi Y, Katada T. Novel function of the eukaryotic polypeptide-chain releasing factor 3 (eRF3/GSPT) in the mRNA degradation pathway. Biochemistry (Mosc) 1999, 64:1367-1372.
-
(1999)
Biochemistry (Mosc)
, vol.64
, pp. 1367-1372
-
-
Hoshino, S.1
Hosoda, N.2
Araki, Y.3
Kobayashi, T.4
Uchida, N.5
Funakoshi, Y.6
Katada, T.7
-
39
-
-
0347093310
-
Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein.
-
Uchida N, Hoshino S, Katada T. Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J Biol Chem 2004, 279:1383-1391.
-
(2004)
J Biol Chem
, vol.279
, pp. 1383-1391
-
-
Uchida, N.1
Hoshino, S.2
Katada, T.3
-
40
-
-
34548359334
-
Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein.
-
Siddiqui N, Mangus DA, Chang TC, Palermino JM, Shyu AB, Gehring K. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J Biol Chem 2007, 282:25067-25075.
-
(2007)
J Biol Chem
, vol.282
, pp. 25067-25075
-
-
Siddiqui, N.1
Mangus, D.A.2
Chang, T.C.3
Palermino, J.M.4
Shyu, A.B.5
Gehring, K.6
-
41
-
-
36049016095
-
Human tob, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation.
-
Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CY, Zhong Z, Yamashita Y, Zheng D, Shyu AB. Human tob, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol Cell Biol 2007, 27:7791-7801.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 7791-7801
-
-
Ezzeddine, N.1
Chang, T.C.2
Zhu, W.3
Yamashita, A.4
Chen, C.Y.5
Zhong, Z.6
Yamashita, Y.7
Zheng, D.8
Shyu, A.B.9
-
42
-
-
14244256765
-
Interaction of anti-proliferative protein tob with poly(A)-binding protein and inducible poly(A)-binding protein: implication of tob in translational control.
-
Okochi K, Suzuki T, Inoue J, Matsuda S, Yamamoto T. Interaction of anti-proliferative protein tob with poly(A)-binding protein and inducible poly(A)-binding protein: implication of tob in translational control. Genes Cells 2005, 10:151-163.
-
(2005)
Genes Cells
, vol.10
, pp. 151-163
-
-
Okochi, K.1
Suzuki, T.2
Inoue, J.3
Matsuda, S.4
Yamamoto, T.5
-
43
-
-
77956259603
-
Quantitative characterization of tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation.
-
Ruan L, Osawa M, Hosoda N, Imai S, Machiyama A, Katada T, Hoshino S, Shimada I. Quantitative characterization of tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation. J Biol Chem 2010, 285:27624-27631.
-
(2010)
J Biol Chem
, vol.285
, pp. 27624-27631
-
-
Ruan, L.1
Osawa, M.2
Hosoda, N.3
Imai, S.4
Machiyama, A.5
Katada, T.6
Hoshino, S.7
Shimada, I.8
-
44
-
-
33745806590
-
Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae.
-
Keeling KM, Salas-Marco J, Osherovich LZ, Bedwell DM. Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 2006, 26:5237-5248.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 5237-5248
-
-
Keeling, K.M.1
Salas-Marco, J.2
Osherovich, L.Z.3
Bedwell, D.M.4
-
45
-
-
79953803635
-
Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase.
-
Hosoda N, Funakoshi Y, Hirasawa M, Yamagishi R, Asano Y, Miyagawa R, Ogami K, Tsujimoto M, Hoshino S. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J 2011, 30:1311-1323.
-
(2011)
EMBO J
, vol.30
, pp. 1311-1323
-
-
Hosoda, N.1
Funakoshi, Y.2
Hirasawa, M.3
Yamagishi, R.4
Asano, Y.5
Miyagawa, R.6
Ogami, K.7
Tsujimoto, M.8
Hoshino, S.9
-
46
-
-
13944274507
-
Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.
-
Semotok JL, Cooperstock RL, Pinder BD, Vari HK, Lipshitz HD, Smibert CA. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo. Curr Biol 2005, 15:284-294.
-
(2005)
Curr Biol
, vol.15
, pp. 284-294
-
-
Semotok, J.L.1
Cooperstock, R.L.2
Pinder, B.D.3
Vari, H.K.4
Lipshitz, H.D.5
Smibert, C.A.6
-
47
-
-
33846954393
-
PUF protein-mediated deadenylation is catalyzed by Ccr4p.
-
Goldstrohm AC, Seay DJ, Hook BA, Wickens M. PUF protein-mediated deadenylation is catalyzed by Ccr4p. J Biol Chem 2007, 282:109-114.
-
(2007)
J Biol Chem
, vol.282
, pp. 109-114
-
-
Goldstrohm, A.C.1
Seay, D.J.2
Hook, B.A.3
Wickens, M.4
-
48
-
-
33646875518
-
CUG-BP binds to RNA substrates and recruits PARN deadenylase.
-
Moraes KC, Wilusz CJ, Wilusz J. CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA 2006, 12:1084-1091.
-
(2006)
RNA
, vol.12
, pp. 1084-1091
-
-
Moraes, K.C.1
Wilusz, C.J.2
Wilusz, J.3
-
49
-
-
2942612333
-
A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery.
-
Gherzi R, Lee KY, Briata P, Wegmuller D, Moroni C, Karin M, Chen CY. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 2004, 14:571-583.
-
(2004)
Mol Cell
, vol.14
, pp. 571-583
-
-
Gherzi, R.1
Lee, K.Y.2
Briata, P.3
Wegmuller, D.4
Moroni, C.5
Karin, M.6
Chen, C.Y.7
-
50
-
-
77956261147
-
MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment.
-
Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JL. MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J Biol Chem 2010, 285:27590-27600.
-
(2010)
J Biol Chem
, vol.285
, pp. 27590-27600
-
-
Marchese, F.P.1
Aubareda, A.2
Tudor, C.3
Saklatvala, J.4
Clark, A.R.5
Dean, J.L.6
-
51
-
-
78751504841
-
Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment.
-
Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 2011, 31:256-266.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 256-266
-
-
Clement, S.L.1
Scheckel, C.2
Stoecklin, G.3
Lykke-Andersen, J.4
-
52
-
-
78751477191
-
Gene silencing by micrornas: contributions of translational repression and mRNA decay.
-
Huntzinger E, Izaurralde E. Gene silencing by micrornas: contributions of translational repression and mRNA decay. Nat Rev Genet 2011, 12:99-110.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
-
53
-
-
79955046372
-
The poly(rC)-binding protein αcp2 is a noncanonical factor inX. Laevis cytoplasmic polyadenylation.
-
Vishnu MR, Sumaroka M, Klein PS, Liebhaber SA. The poly(rC)-binding protein αcp2 is a noncanonical factor inX. Laevis cytoplasmic polyadenylation. RNA 2011, 17:944-956.
-
(2011)
RNA
, vol.17
, pp. 944-956
-
-
Vishnu, M.R.1
Sumaroka, M.2
Klein, P.S.3
Liebhaber, S.A.4
-
54
-
-
0742323558
-
Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics.
-
Maquat LE. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 2004, 5:89-99.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, pp. 89-99
-
-
Maquat, L.E.1
-
55
-
-
74549134095
-
How and where are nonsense mRNAs degraded in mammalian cells?
-
Muhlemann O, Lykke-Andersen J. How and where are nonsense mRNAs degraded in mammalian cells? RNA Biol 2010, 7:28-32.
-
(2010)
RNA Biol
, vol.7
, pp. 28-32
-
-
Muhlemann, O.1
Lykke-Andersen, J.2
-
56
-
-
2642656314
-
The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs.
-
Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, Peltz SW. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 1998, 12:1665-1677.
-
(1998)
Genes Dev
, vol.12
, pp. 1665-1677
-
-
Czaplinski, K.1
Ruiz-Echevarria, M.J.2
Paushkin, S.V.3
Han, X.4
Weng, Y.5
Perlick, H.A.6
Dietz, H.C.7
Ter-Avanesyan, M.D.8
Peltz, S.W.9
-
57
-
-
32044435368
-
Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay.
-
Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 2006, 20:355-367.
-
(2006)
Genes Dev
, vol.20
, pp. 355-367
-
-
Kashima, I.1
Yamashita, A.2
Izumi, N.3
Kataoka, N.4
Morishita, R.5
Hoshino, S.6
Ohno, M.7
Dreyfuss, G.8
Ohno, S.9
-
58
-
-
78049447110
-
Smg6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay.
-
Kashima I, Jonas S, Jayachandran U, Buchwald G, Conti E, Lupas AN, Izaurralde E. Smg6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes Dev 2010, 24:2440-2450.
-
(2010)
Genes Dev
, vol.24
, pp. 2440-2450
-
-
Kashima, I.1
Jonas, S.2
Jayachandran, U.3
Buchwald, G.4
Conti, E.5
Lupas, A.N.6
Izaurralde, E.7
-
59
-
-
58149265041
-
Smg6 promotes endonucleolytic cleavage of nonsense mRNA in human cells.
-
Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH. Smg6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 2009, 16:49-55.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 49-55
-
-
Eberle, A.B.1
Lykke-Andersen, S.2
Muhlemann, O.3
Jensen, T.H.4
-
60
-
-
0027932513
-
Premature translational termination triggers mRNA decapping.
-
Muhlrad D, Parker R. Premature translational termination triggers mRNA decapping. Nature 1994, 370:578-581.
-
(1994)
Nature
, vol.370
, pp. 578-581
-
-
Muhlrad, D.1
Parker, R.2
-
61
-
-
0037762554
-
An nmd pathway in yeast involving accelerated deadenylation and exosome-mediated 3′->5′ degradation.
-
Mitchell P, Tollervey D. An nmd pathway in yeast involving accelerated deadenylation and exosome-mediated 3′->5′ degradation. Mol Cell 2003, 11:1405-1413.
-
(2003)
Mol Cell
, vol.11
, pp. 1405-1413
-
-
Mitchell, P.1
Tollervey, D.2
-
62
-
-
0141819096
-
Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities.
-
Lejeune F, Li X, Maquat LE. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 2003, 12:675-687.
-
(2003)
Mol Cell
, vol.12
, pp. 675-687
-
-
Lejeune, F.1
Li, X.2
Maquat, L.E.3
-
63
-
-
0038112021
-
Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway.
-
Chen CY, Shyu AB. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol 2003, 23:4805-4813.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 4805-4813
-
-
Chen, C.Y.1
Shyu, A.B.2
-
64
-
-
0036205348
-
Boundary-independent polar nonsense-mediated decay.
-
Wang J, Gudikote JP, Olivas OR, Wilkinson MF. Boundary-independent polar nonsense-mediated decay. EMBO Rep 2002, 3:274-279.
-
(2002)
EMBO Rep
, vol.3
, pp. 274-279
-
-
Wang, J.1
Gudikote, J.P.2
Olivas, O.R.3
Wilkinson, M.F.4
-
65
-
-
0038402506
-
Computational modeling and experimental analysis of nonsense-mediated decay in yeast.
-
Cao D, Parker R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 2003, 113:533-545.
-
(2003)
Cell
, vol.113
, pp. 533-545
-
-
Cao, D.1
Parker, R.2
-
66
-
-
33744994837
-
EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length.
-
Buhler M, Steiner S, Mohn F, Paillusson A, Muhlemann O. EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length. Nat Struct Mol Biol 2006, 13:462-464.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 462-464
-
-
Buhler, M.1
Steiner, S.2
Mohn, F.3
Paillusson, A.4
Muhlemann, O.5
-
67
-
-
40949148553
-
Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways.
-
Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J 2008, 27:736-747.
-
(2008)
EMBO J
, vol.27
, pp. 736-747
-
-
Ivanov, P.V.1
Gehring, N.H.2
Kunz, J.B.3
Hentze, M.W.4
Kulozik, A.E.5
-
68
-
-
33947609704
-
A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay.
-
Behm-Ansmant I, Gatfield D, Rehwinkel J, Hilgers V, Izaurralde E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J 2007, 26:1591-1601.
-
(2007)
EMBO J
, vol.26
, pp. 1591-1601
-
-
Behm-Ansmant, I.1
Gatfield, D.2
Rehwinkel, J.3
Hilgers, V.4
Izaurralde, E.5
-
69
-
-
40449131535
-
Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay.
-
Silva AL, Ribeiro P, Inacio A, Liebhaber SA, Romao L. Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA 2008, 14:563-576.
-
(2008)
RNA
, vol.14
, pp. 563-576
-
-
Silva, A.L.1
Ribeiro, P.2
Inacio, A.3
Liebhaber, S.A.4
Romao, L.5
-
70
-
-
8544253956
-
A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay.
-
Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004, 432:112-118.
-
(2004)
Nature
, vol.432
, pp. 112-118
-
-
Amrani, N.1
Ganesan, R.2
Kervestin, S.3
Mangus, D.A.4
Ghosh, S.5
Jacobson, A.6
-
71
-
-
0032880399
-
Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance.
-
Muhlrad D, Parker R. Aberrant mRNAs with extended 3′ UTRs are substrates for rapid degradation by mRNA surveillance. RNA 1999, 5:1299-1307.
-
(1999)
RNA
, vol.5
, pp. 1299-1307
-
-
Muhlrad, D.1
Parker, R.2
-
72
-
-
43249093760
-
Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region.
-
Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O. Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 2008, 6:e92.
-
(2008)
PLoS Biol
, vol.6
-
-
Eberle, A.B.1
Stalder, L.2
Mathys, H.3
Orozco, R.Z.4
Muhlemann, O.5
-
73
-
-
43249084802
-
A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay.
-
Singh G, Rebbapragada I, Lykke-Andersen J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 2008, 6:e111.
-
(2008)
PLoS Biol
, vol.6
-
-
Singh, G.1
Rebbapragada, I.2
Lykke-Andersen, J.3
-
74
-
-
84862776849
-
Testing the faux-UTR model for NMD: Analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p.
-
Kervestin S, Li C, Buckingham R, Jacobson A. Testing the faux-UTR model for NMD: Analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 2012, 94:1560-1571.
-
(2012)
Biochimie
, vol.94
, pp. 1560-1571
-
-
Kervestin, S.1
Li, C.2
Buckingham, R.3
Jacobson, A.4
-
75
-
-
38149035044
-
Nonsense-mediated mRNA decay in yeast does not require PAB1 or a poly(A) tail.
-
Meaux S, van Hoof A, Baker KE. Nonsense-mediated mRNA decay in yeast does not require PAB1 or a poly(A) tail. Mol Cell 2008, 29:134-140.
-
(2008)
Mol Cell
, vol.29
, pp. 134-140
-
-
Meaux, S.1
van Hoof, A.2
Baker, K.E.3
-
76
-
-
0036237537
-
Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [psi(+)] propagation.
-
Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G. Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [psi(+)] propagation. Mol Cell Biol 2002, 22:3301-3315.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 3301-3315
-
-
Cosson, B.1
Couturier, A.2
Chabelskaya, S.3
Kiktev, D.4
Inge-Vechtomov, S.5
Philippe, M.6
Zhouravleva, G.7
-
77
-
-
0037155592
-
An mRNA surveillance mechanism that eliminates transcripts lacking termination codons.
-
Frischmeyer PA, van Hoof A, O'Donnell K, Guerrerio AL, Parker R, Dietz HC. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 2002, 295:2258-2261.
-
(2002)
Science
, vol.295
, pp. 2258-2261
-
-
Frischmeyer, P.A.1
van Hoof, A.2
O'Donnell, K.3
Guerrerio, A.L.4
Parker, R.5
Dietz, H.C.6
-
78
-
-
0037155584
-
Exosome-mediated recognition and degradation of mRNAs lacking a termination codon.
-
van Hoof A, Frischmeyer PA, Dietz HC, Parker R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 2002, 295:2262-2264.
-
(2002)
Science
, vol.295
, pp. 2262-2264
-
-
van Hoof, A.1
Frischmeyer, P.A.2
Dietz, H.C.3
Parker, R.4
-
79
-
-
0036715205
-
Non-stop decay-a new mRNA surveillance pathway.
-
Vasudevan S, Peltz SW, Wilusz CJ. Non-stop decay-a new mRNA surveillance pathway. Bioessays 2002, 24:785-788.
-
(2002)
Bioessays
, vol.24
, pp. 785-788
-
-
Vasudevan, S.1
Peltz, S.W.2
Wilusz, C.J.3
-
80
-
-
84867618518
-
Degradation of mRNAs that lack a stop codon: a decade of nonstop progress.
-
Klauer AA, van Hoof A. Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. Wiley Interdiscip Rev RNA 2012.
-
(2012)
Wiley Interdiscip Rev RNA
-
-
Klauer, A.A.1
van Hoof, A.2
-
81
-
-
58149178746
-
Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components.
-
Atkinson GC, Baldauf SL, Hauryliuk V. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol Biol 2008, 8:290.
-
(2008)
BMC Evol Biol
, vol.8
, pp. 290
-
-
Atkinson, G.C.1
Baldauf, S.L.2
Hauryliuk, V.3
-
82
-
-
84861456756
-
Dom34:Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA.
-
Tsuboi T, Kuroha K, Kudo K, Makino S, Inoue E, Kashima I, Inada T. Dom34:Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol Cell 2012, 46:518-529.
-
(2012)
Mol Cell
, vol.46
, pp. 518-529
-
-
Tsuboi, T.1
Kuroha, K.2
Kudo, K.3
Makino, S.4
Inoue, E.5
Kashima, I.6
Inada, T.7
-
83
-
-
33645277360
-
Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation.
-
Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006, 440:561-564.
-
(2006)
Nature
, vol.440
, pp. 561-564
-
-
Doma, M.K.1
Parker, R.2
-
84
-
-
80051673745
-
Modulation of exosome-mediated mRNA turnover by interaction of GTP-binding protein 1 (GTPBP1) with its target mRNAs.
-
Woo KC, Kim TD, Lee KH, Kim DY, Kim S, Lee HR, Kang HJ, Chung SJ, Senju S, Nishimura Y, et al. Modulation of exosome-mediated mRNA turnover by interaction of GTP-binding protein 1 (GTPBP1) with its target mRNAs. FASEB J 2011, 25:2757-2769.
-
(2011)
FASEB J
, vol.25
, pp. 2757-2769
-
-
Woo, K.C.1
Kim, T.D.2
Lee, K.H.3
Kim, D.Y.4
Kim, S.5
Lee, H.R.6
Kang, H.J.7
Chung, S.J.8
Senju, S.9
Nishimura, Y.10
|